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1 Introduction 

This document describes the end-of-season mapping of the crop type and crop mask for an Area Of Interest 
(AOI) in Kenya during the long rains season in 2023. The AOI is extended from 99,000 km² (applied in 2021) 
to 181,000 km² for the current season. This document summarizes the workflow and any methodological 
change (put in place to obtain the above-mentioned products) with respect to what was described in the 
feasibility study and conducted during the previous long-, and short rains seasons. The document also 
describes the satellite imagery, the fieldwork and the ground truth data used for the classification, satellite 
data pre-, and post-processing to get an understanding of the workflow used. Where changes have been 
made from previous seasons, these are described in more detail in this report, together with the reasons for 
the changes. 

Unlike previous rainy seasons, Kenya's current long rains season hasn't been severely affected by drought1 
as shown in Figure 1. Abundant rainfall has been recorded in the AOI since the beginning of the season, which 
has been beneficial for the long rains. Vegetation conditions in most of the country have improved compared 
to previous months and are above average, except for parts of the coastal areas and Taita Taveta county 
which show early negative anomalies and had experienced a late start of the season. So, in the south-east of 
the AOI, initial crop growth was delayed by the drought. Reports indicate that the long rains season crops in 
the main producing areas of western and central Kenya generally performed well in the latter part of the 
season, thanks to sustained rainfall from the early part of the season. Consequently, no major drought 
conditions warning was visible in the country.  

 

   

Figure 1: Seasonal Combined Drought Indicator – April-June (left) June-August 2023 (right) (Source: East Africa 

Drought Watch https://droughtwatch.icpac.net/mapviewer/) 

 

                                                           

1 https://agricultural-production-hotspots.ec.europa.eu/country.php?cntry=133 
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2 Summary of methodology 

This section provides a summary of the methodology used by the consortium to derive the sample units used 
in the implemented workflow as training and validation data to produce the crop type and the crop mask 
maps. The methodology is also described in the feasibility study (D1.1) and Annex I, Annex II and Annex III 
provide background information on the stratification and the sampling design. 

In order to account for to variability and have a statistically valid product, a stratified sampling approach is 
proposed for the implementation of the field campaign and the provision of training and validation data. This 
approach consists of the following steps: 

1. Definition of a suitable stratification: identify homogeneous strata with respect to agricultural 
practices and cropping systems and identify areas without agriculture activities.  

2. Selection of an appropriate sample unit: define an appropriate type of sample unit to optimise 
the field data collection while guaranteeing the acquisition of sufficient high-quality data.  

3. Adoption of a suitable sampling strategy: the purpose is to guarantee that the data collected 
accurately represents the various conditions in the selected AOI.  

4. Identification of the sample size per stratum: this involves drawing the final sample content and 
sample size per stratum.  

In order to meet the requirements of the applicants the following details needed to be captured; 1) all land 
cover types including the pre-defined main crop type of applicants interest, 2) separating irrigation from 
rainfed fields and 3) presence of mixed cropping.  

2.1 Stratification  

After analysing the AOI, a stratification with 6 strata is chosen. These strata were defined based on 3 different 
discriminating factors: 1) the expected land cover, 2) the agro-ecological zone and 3) the elevation.  

Even though the data is older (dating from 1995-2002), the source chosen for the landcover is the FAO’s 
AFRICOVER dataset. It provides greater spatial details in comparison to other dataset, and enables the 
distinction between rainfed and irrigated cropland. The WRI dataset will allow to differentiate the two crop 
systems in separate strata and rice fields, cultivated through irrigation most of it, will be included in the 
irrigation crop strata. 

For the second factor, the Agro-Ecological Zones (AEZ) for Africa South of the Sahara2 dataset has been 
chosen. It is a dataset with 10 km resolution for the reference year 2015 developed based on the 
methodology developed by the FAO and the International Institute for Applied Systems Analysis (IIASA). For 
Kenya, 4 main AEZ are determined with one class having two sub-types resulting in 5 classes; 1) Humid, 2) 
Sub-Humid, 3) Semi-Arid, 4a) Tropical Highlands Humid and 4b) Tropical Highlands Sub-Humid.  

Finally, the Digital Elevation Model3 has been used, splitting the elevation into 3 classes: 1) 0-1000 meters as 
lowlands, 2) 1000-3000 meters as highlands and 3) all above 3000 m as not suitable for agriculture. 

                                                           

2 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/M7XIUB 

3 https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/M7XIUB
https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198
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The 3 above factors have been combined to constitute the following 6 strata; 1) Irrigated crops (including 
rice fields), 2) Rainfed Lowlands, 3) Rainfed Highlands Sub-Humid/Humid, 4) Rainfed Tropical Highlands 
Humid, 5) Rainfed Tropical Highlands Sub-Humid and 6) Other areas (See Figure 2). 

 

Figure 2 Derived AOI stratification 

2.2 Sample design 

To sample the whole AOI, a square segment design is implanted. Compared to point sampling, the use of 
segments has several advantages: 1) the entire area is described and 2) land cover characteristics can be 
extracted based on their proportion. 

A two-stage sampling approach is implemented by 1) applying a 20 x 20 km grid over the AOI and 2) 
subsequently selecting a sample unit within each grid cell. The size of the square segments should be 
determined based on two criteria: 1) optimising the level of effort required to collect the data in the field and 
2) maintain the required level of precision. Based on previous experience documented in the literature 
(Taylor, 1997), it is recommended that a segment should not contain more than 10 to 30 field parcels on 
average. This is to ensure a good compromise between the total number of segments, the time required to 
survey each segment and the spatial distribution of these sample units. Based on county information 
provided by the JRC, the crop field parcels typically range from 1 to 5 acres. Considering an average of 3 acres 
(i.e., 1.2 ha), this would correspond to a total of 20 crop field parcels (assuming that the entire segment is 
covered with crops) a segment size should cover 25 ha. To have sensible dimensions and considering that 
most segments also contain other land use we suggest a segment with a unique size of 500 x 500 m and 
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covering 25 ha. This assumption was tested and confirmed to be correct by digitizing these segments and 
counting the cropland parcels within.  

The final selection of segments is done via stratified systematic random sampling in order 1) to gather 
training data for the identification of land cover and crop types and 2) to gather data for the provision of 
unbiased crop area estimates and the validation of the crop type maps and crop mask.  

The first stage of the approach is implemented by applying a grid over the overall area of the AOI and ensures 
that the segments that are selected are distributed over the entire AOI. The second stage refers to the 
selection of sample units within each grid cell. The grid cell is often referred to as a block (Gallego, 1995). 
Two-stage sampling is considered suitable for accuracy assessment of land cover maps and area estimation 
of land cover types (Stehman, 2009) and can be adopted in certain cases to find an optimal compromise 
between the practical ease of data collection versus a proper geographic distribution. 

Given the number and distribution of crops within the AOI, a target of 600 sample units or segments in total 
seems appropriate with one or two selected within a 20 x 20 km grid cell. The regular grid is preferred to the 
use of administrative regions as described by Defourny et al. (2019), because  the size can vary considerably 
between counties. Multiple sample units are randomly selected for each grid cell in sequence. The selected 
sampling units sampled in this way are referred to as Replicate 1, Replicate 2 etc. Such an approach is well 
documented and was notably applied as part of the Monitoring Agriculture with Remote Sensing (MARS) 
programme from the European Commission (EC). A complete background is available in Gallego (1995) and 
Taylor et al. ( 1997).  The advantage of using replicates is that a different sampling fraction can be applied to 
cropland and non-cropland strata. In addition, this approach can mitigate some of the accessibility issues by 
providing additional alternative sample units locations.  

With this approach 588 segments have been selected for the Kenyan AOI. 

 

Figure 3: Spatial distribution of the sample units per aggregated stratum (data provided to JRC as shapefile) 
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3 Summary of data used 

The Figure 4 below shows the extended AOI for Kenya, overlaid with the Sentinel-2 tile-based grid and the 
fieldwork (500x500m) square segments.  

 

Figure 4. Kenya AOI overlaid with the S2 tile-based grid and the fieldwork segments 

3.1 Satellite data – Sentinel-2   

In total, 2,274 Sentinel-2A & B Level-2A images have been acquired covering 35 tiles between 01-02-2023 
and 31-08-2023. The Table 1 lists the S2 data used per S2 tile ID. 

Table 1. S2 tiles covering the AOI for Kenya 

Tile ID First Date Last Date Number of Images 

36MXD 05/02/2023 29/08/2023 42 

36MXE 05/02/2023 29/08/2023 41 

36MYC 02/02/2023 31/08/2023 83 

36MYD 05/02/2023 29/08/2023 42 

36MYE 05/02/2023 29/08/2023 41 

36MZC 02/02/2023 31/08/2023 84 

36MZD 02/02/2023 31/08/2023 84 

36MZE 02/02/2023 31/08/2023 83 

36NXF 03/02/2023 29/08/2023 83 

36NXG 03/02/2023 29/08/2023 80 
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Tile ID First Date Last Date Number of Images 

36NYF 05/02/2023 29/08/2023 42 

36NYG 05/02/2023 29/08/2023 41 

36NZF 02/02/2023 31/08/2023 84 

37MBT 02/02/2023 31/08/2023 42 

37MBU 02/02/2023 31/08/2023 42 

37MBV 02/02/2023 31/08/2023 83 

37MCR 02/02/2023 31/08/2023 85 

37MCS 02/02/2023 31/08/2023 84 

37MCT 02/02/2023 31/08/2023 84 

37MCU 02/02/2023 31/08/2023 42 

37MCV 02/02/2023 31/08/2023 42 

37MDR 04/02/2023 28/08/2023 42 

37MDS 02/02/2023 31/08/2023 84 

37MDT 02/02/2023 31/08/2023 86 

37MDU 02/02/2023 31/08/2023 85 

37MDV 02/02/2023 31/08/2023 84 

37MEQ 04/02/2023 28/08/2023 42 

37MER 04/02/2023 28/08/2023 42 

37MES 04/02/2023 28/08/2023 43 

37MET 04/02/2023 28/08/2023 44 

37MFS 01/02/2023 30/08/2023 89 

37MFT 01/02/2023 30/08/2023 89 

37NBA 02/02/2023 31/08/2023 84 

37NCA 02/02/2023 31/08/2023 42 

37NDA 02/02/2023 31/08/2023 84 
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3.2 Fieldwork data  

Besides being an autonomous deliverable, the fieldwork data is also used as input into the classification 
procedure as well as for the validation of the results. To maximise the use of the field data in the classification 
workflow, the following processing steps are undertaken:  

1. Assign point data (actual fieldwork) to pre-digitized polygons; 
2. Apply a negative buffer of 5m to allow removal of boundary effects between landcover types; 
3. Deletion of polygons smaller than 0.1 ha; 
4. Splitting of data between training (75%) and validation (25%) sets; 
5. Manual quality check of all training/validation polygons.  

In the following, additional details regarding the five steps above are provided. 

1) Data on crops and other landcover classes have been acquired in the field on the basis of pre-digitized 
500x500m segments (using a combination of the most recent available Very High Resolution (VHR) imagery 
from Google Earth/Bing Maps, Yandex, Planet and Sentinel-2 imagery from the current season). Points have 
been gathered for most of the digitised polygons. Some polygons in the 500X500m segments were excluded 
due to the total absence of crops. For all other segments, some polygons within the segments have not been 
visited in the field for the safety of the enumerators (e.g. due to hostile land owners), or due to inaccessibility 
(e.g. flooding). To create an input for classification, point data are assigned to the polygons. In the case where 
no point is recorded, the land cover class recorded during the first digitising of the polygon prior to the field 
campaign is assigned. The polygons labelled “cropland” which are not surveyed are excluded from the 
fieldwork dataset since the crop type can’t be assigned. In other word, these polygons are excluded from the 
training dataset for the crop type mapping, from the validation and the area estimates not to bias statistics.  

2) A negative buffer of 5 meters is applied to eliminate, or at least minimize, the boundary effects between 
different classes that will negatively impact the purity of training sample spectral signatures. Consequently, 
polygons are always separated by 10 meters, which corresponds to the size of 1 Sentinel-2 pixel. 

3) The acreage of each buffered polygon is calculated and all polygons smaller than 0.1 ha are deleted. Based 
on the past experiences, polygons below 0.1 ha are considered spectrally heterogenous and are not deemed 
fit to serve as input into training samples for classification. Nevertheless, this change is the only deviation 
from the feasibility study report and the MMU for the classification output is still set to 0.04 ha as required. 

4) All the resulting polygons have been visually checked (and manually edited where appropriate) to correct 
obvious thematic errors. This is done by transparent overlay of all labelled polygons per 500x500m segment 
over a mid-season cloud-free Sentinel-2 L3 image. Obvious labelling errors like “forest” for a cropland parcel 
is quickly spotted and corrected. 

5) The resulting dataset from step 1 to 4 is then split into two separate sets to be used for training and 
validation. 75% of the dataset is used to train the classification while the remaining 25% is used for validation 
of the classification results. There is no overlap between the training and validation sets to ensure complete 
independency of the datasets. Splitting is done at a Sentinel-2 tile level to ensure a good representativity of 
the samples per scene. The classification workflow is applied per S2-based block as shown in Figure 4.  

The Figure 5 shows for a single segment each of the above-mentioned processing steps using a Sentinel-2A 
L3A image from 15-04-2021 as a background. 
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Fieldwork points overlaid 
on digitized polygons 

Buffered features, using 
inside buffer of -5m. 

Removal of features < 
MMU (0.1 ha) 

Split between training 
(yellow) & validation (red) 

Figure 5. Preparation of fieldwork data for training and validation. 

Resulting from all the described processing steps, 8,159 polygons, covering approximately 100 km² are 
available for the classification process. 25% are used for training and 75% for validation. In total 70 individual 
classes are distinguished, of which 62 individual crop types. The figures below show a few examples from the 
fieldwork campaign.  

 

 

Figure 6. Field with maize in monoculture 
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Figure 7. Field with maize and cabbage in mixed cropping 

End-of-season mapping methodology deviations: 

For the end-of-season, there were no deviations from what was described in the methodology presented 
above and what was also done for the previous in-season mapping. 
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4 Workflow 

4.1 Pre-processing 

For both the optical and radar data, the specific pre-processing steps are summarised below. 

Sentinel-2 

Based on the Sentinel-2 L2A data, we reprocessed the native cloud masks using S2cloudless4 and Fmask5 
algorithms for detailed removal of clouds and cloud shadows (see Annex IV). Monthly syntheses are then 
processed using the WASP algorithm (open-source solution developed by CNES6). For each pixel and each 
band (10 and 20m bands), the WASP algorithm computes the monthly synthesis using a weighted average of 
the cloud free surface reflectance’s gathered during a synthesis period of 91 days. Cloud-free pixels as close 
as possible to the “centre-date” are used to build a cloud-free image. The Figure 8 shows an example for tile 
36MXD, with a centre-date of 15-05-2023. For this synthesis, the algorithm considers all images +/- 45 days 
from the centre date and takes the cloud-free pixel closest to it. 

 

                                                           

4 https://pypi.org/project/s2cloudless/ 

5 jttps://doi.org/10.1016/j.rse.2014.12.014 

6 https://doi.org/10.5281/zenodo.1401360 
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Figure 8: Sentinel-2 monthly synthesis composite, 15/05/2023, tile 36MXD. 

Based on these monthly synthesis, four spectral indices are computed: the Weighted Difference Vegetation 
Index (WDVI7), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 
and Brightness Index (BI). See the index database8 for the formulas and corresponding Sentinel-2 sensor 
bands. All bands and the indices are used as input in the classification algorithm described below. 

Landsat-8 

The use of the Landsat-8 dataset was not considered relevant since the L3A monthly synthesis images using 
Sentinel-2 were successfully generated. Moreover, the coarse spatial resolution of the Landsat-8 data (30m) 
was considered not suitable in case of Kenya when reviewing the size of the agricultural fields and considering 
the minimum mapping unit of 0.04 hectares.  

End-of-season mapping methodology deviations: 

For the end-of-season, there were no deviations from the proposed workflow in terms of pre-processing, 
which was also carried out in a similar way during the previous in-season mapping. For more information on 
pre-processing see Annex IV and Annex V. 

4.2 Classification 

Crop Type – Various classification algorithms were tested during the course of the project, including 
supervised (maximum likelihood) classification, TempCCN and Random Forest (RF). A full description of the 
classification algorithms envisaged by the consortium is given in Annex VI. It was decided to use the RF 
classification method for the Kenyan long rains season mapping 2023, as it consistently achieves the highest 
accuracy of the three methods. The algorithm is characterized by relatively simple parameterization and a 
good computation efficiency.  Based on monthly synthesis Sentinel-2 images (L3A), precomputed features 
and ground truth from fieldwork (75% for training, 25% for validation), the RF classifier has been applied on 
all the tiles to produce the crop type map. The initial classification output contains 49 classes (of which 42 
crop types). The  

 

                                                           
7 https://www.sciencedirect.com/science/article/abs/pii/092427169190005G 

8 https://www.indexdatabase.de/db/is.php?sensor_id=96 
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Figure 9 shows the result of the raw classification output, before post-processing. 

 

 

Figure 9. Raw classification output end-of-season crop type map Kenya 

Crop Mask – For the crop mask, the aggregated results from the S2-derived crop type map have been used. 
The rule to produce the current end-of-season crop mask is as follows: If the results of the classification is 
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one of the 42 individual crop types or one of the mixed cropping classes it is considered Crop. Otherwise it is 
considered Other landcover if it is in the predicted classes of forest, natural shrubs, natural grassland, bare, 
urban, aquatic vegetation, water or wetlands. 

The nomenclature for the Crop Mask can be found in the Table 2.  

Table 2. Nomenclature for Crop Mask 

Code Class Description 

1 Crops All monoculture and mixed cropping 

2 Other landcover Forest, water, natural shrubs, natural grassland, urban, bare, aquatic vegetation 
and wetlands 

 

Post-processing of the classification results has been carried out by merging and clipping all tiles into a 
seamless mosaic covering the entire AOI for both Crop Type and Crop Mask. The 4 classes from the raw crop 
type classification are merged into 10 final classes for the final map, including the 8 largest individual crop 
types according to fieldwork statistics and the 5 main crops as defined by the country contact. The Table 3 
lists the final classes for the Crop Type map and number coding as found in the final GeoTiff files 
(D3.1_Kenya_CropType_EndOfSeason_LongRains_2023.tif and D3.2_ 
Kenya_CropMask_EndOfSeason_LongRains_2023.tif). The nomenclature can be viewed in a GIS 
environment, ArcGIS or QGIS, using  the accompanying *.lyr or *.qml  legend layers provided with the above-
mentioned GeoTiff files. 

Table 3. Nomenclature for Crop Type map 

Code Class Description 

1 Maize  Including mixed cropping with maize as dominant crop 

4 Beans Including French beans, black beans and mixed cropping with beans as dominant 
crop 

11 Sorghum Including mixed cropping with sorghum as dominant crop 

13 Green grams Including mixed cropping with green grams as dominant crop 

14 Wheat Including mixed cropping with wheat as dominant crop 

19 Sugarcane Including mixed cropping with sugarcane as dominant crop 

6 Tea Including mixed cropping with tea as dominant crop 

12 Peas Including cow peas, chick peas, green peas, pigeon peas and mixed cropping with 
peas dominant crop 

9 other crops  All other monoculture crops, other mixed cropping and field preparations. 

10 other landcover Forest, water, natural shrubs, natural grassland, urban, bare and wetlands. 

 

A mask (shapefile) for all non-agricultural areas is produced from ancillary public data sources including 

protected area, national parks, wetland areas, open water, urban area boundaries, roads, forests and 

rangelands. This mask is used to recode erroneous cropland classes to other landcover, as no agriculture is 

(legally) supposed to be present in these areas. However, agricultural encroachment may sometimes take 

place in e.g. protected areas and they were preserved in the final map by a detailed visual check using recent 
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Sentinel-2 satellite data for verification. As a final step a sieve operation has been applied whereby all pixel 

clusters of 4 pixels and below (0.04 ha = approximate MMU for S2) are recoded to the majority surrounding 

class. All maps are presented in UTM, zone 37 South. 

End-of-season mapping methodology deviations: 

Compared to the proposed methodology presented in the feasibility study report (D1.1 – section 7.2.3) and 
what was done during the previous in-season mapping, there are no deviations to report for the end-of-
season. The following are the post-processing steps to be applied as presented in the feasibility study report: 

 “Recoding: all individual classes from the raw crop type classification (usually around 45) are recoded 
to 10 final classes, of which 8 are major single crop type classes (tbd with country contact), an “other 
crops" class containing all other crop types, and an “other landcover” class containing all other non-
crop classes (like water, forest, grassland, urban, shrubland). The crop mask contains 2 classes: 
“crops” and “no crops”. 

 Sieve filtering of pixel-based classifications: Sieve filtering recodes (clusters of) pixels to the majority 
surrounding class value, according to a pre-defined sieve size. It is an automated step that will be 
executed in QGIS. 

 Masking of non-crop areas with ancillary data: A shapefile with non-cropped areas will be prepared 
for the AOI. Input layers used for Kenya consist of publicly available vector layers of protected areas, 
wetlands, forest and urban areas. All non-crop classes are combined into a single layer, and will then 
be manually reviewed in a GIS by superimposing the vector layer on a composite of recent Sentinel-2 
data. Cropped areas in e.g. protected areas and forested areas (due to encroachment) are deleted 
from the non-crop layer. The crop type map and crop mask can be masked with the resulting layer so 
that mis-classified crop classes are minimised. 

 A manual check of the classification result is done by panning through the complete mapping area in 
high resolution linked to a window with the corresponding satellite mosaic of a mid-season date. 
Some anomalies can be spotted easily (e.g. residual mis-classified landcover pixels in open water or 
protected areas) and can be manually recoded.“ 

4.3 Map production 

Both the Crop Type map and Crop Mask are presented in A0 printable PDF maps with layout including legend, 
north arrow, metadata, grid (UTM 37, South), relevant client and contractor logo’s and scale bar. The maps 
are presented on 1:1.000.000 scale, the largest possible scale to fit the entire AOI on A0 format. The figures 
below show the end-of-season Crop Mask and Crop Type map for Kenya for the long rains season. 
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Figure 10. End-of-season Crop Mask for the long rains season 2023 in Kenya 
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Figure 11. End-of-season Crop Type map for the long rains season 2023 in Kenya 

 

End-of-season mapping methodology deviations: 

The end products are delivered in exactly the same way as the in-season mapping and carried out according 
to the proposed methodology and presented in the feasibility study (D1.1 – Section 7.2.4), i.e.:  

 “The Crop Type map & Crop Mask are presented in A0 printable PDF map with layout including legend, 
north arrow, metadata, grid (UTM 36, North), relevant client and contractor logo’s and scale bar. The 
maps are presented on 1:600.000 scale, the largest possible scale to fit the entire AOI on A0 format.” 
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4.4 Validation 

For both the Crop Mask and Crop Type map, 25% of processed fieldwork data (that is not used for training) 
is used for validation. Confusion matrices are produced and F1 score per class have been calculated and can 
be found in the figures below. There was no need to apply correction factors because an equal sampling 
intensity was applied to each stratum. The validation procedure was carried out as described in the feasibility 
study and is presented below.  

Thematic accuracy is assessed based on the construction of a confusion or error matrix. The construction of 
the error matrix is described as illustrated in Figure 12 for 5 thematic classes.  

 

Figure 12: Confusion Matrix for Accuracy Assessment of thematic map product 

 

Then, the following accuracy metrics can be calculated from the confusion matrix:  

 The Overall Accuracy or Recognition Rate is measured by the sum of the diagonal of the Confusion 

Matrix divided by the total number of controlled points: 𝑂𝐴 𝑜𝑟 𝑅𝑟 = ∑ (αα)/T𝑚
𝛼=𝑖 . The Recognition 

Rate or Overall Accuracy assesses the overall agreement between the classified and reference data 

set. However, for single class themes, it does not necessarily provide a realistic assessment of the 

quality of the map produced because there can be substantial unbalance between omission and 

commission errors. 

 Therefore, the row and column totals and the diagonal of the Matrix are used to assess two types of 

accuracy, the User’s and Producer’s Accuracy: 

o Producer Accuracy for the  class = αα/Cα is a measure of omission error. For instance, an 

observation has been identified as maize in the validation set, but has been classified as 

another class: it has been omitted from the maize class. 
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o User Accuracy for the  class = 𝛼𝛼/𝑅𝛼  is a measure of the commission error (or 

contamination risk): errors due to the wrong allocation of an observation to a class. For 

instance, an observation is classified as maize, but identified as belonging to another class 

during the validation process: this observation has contaminated another class.  

A full description of the validation strategy is given in Annex VII. 

Figure 13 and Figure 14 show that the overall accuracy for the Crop Type map and Crop Mask are respectively 
89% and 90%, higher than the specifications mentioned in the feasibility study report (D1.1) (65% for both).  

 

 

Figure 13. Confusion matrix for end-of-season Crop Type map of the long rains season 2023 

 

Maize Beans Sorghum
Green 

grams
Wheat Sugarcane Tea Peas

Other 

crops

Other 

landcover
Total User Accuracy F-Score

Maize 12245 8 11 495 193 1 127 666 3954 17700 0,69 0,60

Beans 35 7 9 51 0,14 0,05

Sorghum 0 N/A N/A

Green grams 18 18 1,00 0,15

Wheat 157 880 1 12 4 2 1056 0,83 0,64

Sugarcane 14 336 279 629 0,53 0,29

Tea 18 1044 40 28 1130 0,92 0,81

Peas 101 61 205 367 0,17 0,06

Other crops 138 18 36 18 83 1516 533 2342 0,65 0,29

Other 

landcover
10586 202 126 173 330 1198 382 1321 6063 213215 233596 0,91 0,94

Total 23294 217 155 227 1705 1728 1445 1604 8289 218225 256889

Producer 

accuracy
0,53 0,03 0,00 0,08 0,52 0,19 0,72 0,04 0,18 0,98

Overall 

accuracy
0,89

Crop Type 

User accuracy
0,69

Crop Type 

Producer 

accuracy

0,42

Crop type end-of-season 

mapping for Kenya (long 

rains)
Reference

Map
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Figure 14. Confusion matrix for end-of-season Crop Mask of the long rains season 2023 

 

The crop mask for the end-of-season shows satisfying results for the user accuracy of the crop class (78%) 
with 22% of commission errors; meaning that the map isn’t too much contaminated by erroneous crop 
detection. The producer accuracy is still low (47%) with 53% of omission errors. The classification has missed 
some cropped areas but large improvements have to be noted (+18%) from the in-season to the end-of-
season with the addition of S2 images at the beginning and at the end of the season to better depict the start 
of the growing season and the late stage of the harvest.  

The omission phenomenon is also confirmed by the confusion matrix of the crop type map, which shows low 
producer accuracies for most of the classes (lower than 10%); except for tea, maize and wheat with a 
producer accuracy of 72%, 53% and 52%.  The matrix shows very satisfying user accuracies for the different 
crop types (except beans and peas). For example, the commission errors for the maize, wheat and tea classes 
are respectively 31%, 17% and 8%. As only few samples were available for class green grams, the 100% 
producer accuracy should be taken with caution.  

Overall, the wheat, maize and tea classes tend to show satisfying results with F1-Score between 0.60 and 
0.81. For other classes, results are very low with F1-Score below 0.15 (beans, green grams and peas).   

The low results obtained for these classes can be explained by a number of factors, but the small size and the 
low number of usable fields (> 0.1 ha) associated with the training data are probably one of the most 
important. Most small-scale farmers in Kenya practice subsistence farming, growing crops primarily to meet 
the needs of their families and local communities rather than for commercial purposes. The average field size 
in the training dataset for e.g. beans, green grams and peas is 0.4 ha whereas the average field size for the 
other crops is 1.8 ha, which is 4.5 times higher. As a result, many fields are too small to be used for training. 

Non-crop Crop Total
User 

Accuracy
F-Score

Non-crop 213215 20381 233596 0,91 0,94

Crop 5010 18283 23293 0,78 0,59

Total 218225 38664 256889

Producer 

accuracy
0,98 0,47

Overall 

accuracy
0,90

Cropland mask end-of-

season mapping for Kenya 

(long rains)

Reference

Map
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The limited number of small polygons for these classes results in heterogeneous training data and 
consequently low classification accuracies.  

Mixed cropping/intercropping may also have a small effect on the results. Even if the mixed cropping fields 
are discarded for the learning phase, the fields with a declared dominant crop (more than 50% of the parcel) 
are kept for the training dataset. Yet, a lot of small-scale farmers in Kenya practice mixed cropping farming. 
The total field size for the mixed cropping in the dataset is 1,046 km² out of 2,774 km², representing 37.7% 
of the cropland polygons. A total of 1,734 polygons (representing 855 km² out of 1,046 km²) in mixed cropping 
with a dominant crop declared are kept for the training. As a result, these fields can have a heterogeneous 
spectral signature, resulting in low classification accuracies.  

To a lesser extent, other reasons for low results could be the quality of the field work or the inaccurate 
delineation of the polygons/fields.  

The contribution of each reason to the results is hardly impossible to estimate and assumptions should be 
made with caution.  

End-of-season mapping methodology deviations: 

For the end-of-season, there were no deviations from the methodology described above and in the feasibility 
study (D1.1) and how the statistics were performed during the previous in-season mapping.  
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4.5 Area estimates 

As described in the feasibility study report (D1.1), crop area statistics are also provided, including: 

1. Direct expansion estimates: area estimates from the field data alone; 
2. Pixel count: areas measured from the end-of-season map alone; 
3. Regression estimators: area estimates derived from field data combined with in- season map based 

on linear regression. 

In the following, additional details regarding the three estimates are provided. 

(1) Crop area estimates can be derived directly from the field data alone using the so-called direct expansion 
method since the data has been collected based on a probabilistic sample. Nevertheless, the confidence 
interval of the estimates derived from direct expansion is relatively large. To better consider the mixed 
cropping practice, all the crop surveyed in the field were taking into account for the estimates:   

1) contributing equally to the total area of the field if no dominant crop was declared or, 
2) the dominant crop contributing to half of the total area and the other crops surveyed contributing 

equally to the second half of the total.  

Figure 15 illustrates the change with one example. 

 

Figure 15 : Mixed cropping fields and crop area estimates (non-dominant crop study case) 

(2) Crop area estimates can be derived directly from the end-of-season map alone. Areas measured from 
digital classification have no sampling errors because they are based on pixel counts covering the whole of 
the AOI but they are biased because of misclassification. These misclassifications can be omission and 
commission errors (respectively (omitted features and contamination of a given feature in the final map). So 
area estimates from digital classification are not accurate because significant numbers of pixels of the 
Sentinel-2 image can be mis-classified.  

(3) To improve the precision of the estimates, field segment data (1) can be combined with classified satellite 
imagery (2). In this latter case, a Regression Estimator model can be applied which is more reliable than any 
other area estimation methodology as it provides both an area estimation per cover type together with an 
indication of its uncertainty. In brief, Regression Estimator relies on the combination of area estimates made 
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at the segment level for both ground data and classified satellite imagery. The observations are paired, and 
a regression analysis is performed. The regression estimator yreg is calculated based on the following 
equation: 

𝑦𝑟𝑒𝑔 = 𝑦̅ + 𝑏 ∗ (𝑝̅𝑝𝑜𝑝 − 𝑝̅) 

Where: 𝑦  ̅is the mean field data sample value, b is the slope of the regression line,  𝑝̅𝑝𝑜𝑝 is the proportion of 

pixels classified as the crop in the whole of the region of interest and 𝑝  ̅is the classified image mean sample 
value. 

A full description of the area estimate bias correction is given in Annex VIII. 

The improvement achieved by combining field data with satellite classification can be calculated by a metric 
called the relative efficiency. The relative efficiency is used to estimate the additional size of field work 
sample needed to achieve an equivalent improvement in accuracy of area estimates. Table 4 shows the 
results of the crop area estimates for Kenya. Very good relative efficiencies for Maize, Wheat, Sugarcane and 
Tea with figures greater than 2 are to be noticed. For Beans, Sorghum, Green grams and Peas, the relative 
efficiencies are lower than 2. For example for Wheat, Rice and Sugarcane, the same reduction in variance 
would have been achieved by increasing the size of the field survey sample by 19.5, 9.1 and 7.6. Due to time 
and budget constraints, it is clear that such an increase in the field campaign is not feasible. This would mean 
visiting more than 3,000 sample units (500x500m square segments)! 
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Table 4: Area estimates for the end-of-season mapping of the long rains season 2023 in Kenya 

AOI Area (ha) 18 102 432,96   Maize Beans Sorghum Green grams Wheat Sugarcane Tea Peas Other crops Other landcover 

              

Direct 
Expansion 

Estimate of proportion   0,10  0,01  0,00  0,01  0,01  0,01  0,01  0,02  0,03  0,82  

Variance    0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  

Standard Error   0,01  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,01  

95% Confidence Interval   0,01  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,01  0,02  

                        

Estimate of the class area   1 736 202,78  121 905,67  62 120,04  103 966,15  107 555,34  137 291,80  127 604,73  324 035,55  521 877,67  14 859 873,22  

Variance    10 807 395 865,30  258 994 420,79  101 691 880,77  281 462 014,48  1 152 996 317,01  1 075 918 733,45  1 174 428 415,57  1 384 903 128,26  2 169 255 317,11  22 222 922 884,00  

Standard Error   103 958,63  16 093,30  10 084,24  16 776,83  33 955,80  32 801,20  34 269,93  37 214,29  46 575,27  149 073,55  

95% Confidence Interval   203 758,91  31 542,88  19 765,11  32 882,59  66 553,37  64 290,35  67 169,07  72 940,00  91 287,52  292 184,16  

      
          

      
          

Pixel count  
Map (ha)   1 249 435,98  294,98  547,27  47,27  13 484,28  16 029,94  107 113,24  1 074,57  34 271,16  16 680 134,28  

Map (%)   0,07  0,00  0,00  0,00  0,00  0,00  0,01  0,00  0,00  0,92  

                          

                          

Regression 
Estimator 

Regression estimate   0,09  0,01  0,00  0,00  0,00  0,00  0,01  0,02  0,02  0,85  

Variance    0,00  0,00  0,00  0,00  0,00 0,00  0,00  0,00  0,00  0,00  

Standard Error   0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  

95% Confidence Interval   0,01  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,00  

              
Regression estimate of 
the class area   

1 600 626,85  104 009,78  47 227,13  80 915,40  42 294,52  50 458,32  148 443,63  274 703,66  423 985,73  15 306 949,95  

Variance    3 070 556 250,34  227 157 606,90  69 355 336,10  205 050 794,62  126 793 687,04  55 286 977,31  155 440 566,48  1 025 085 904,70  1 807 017 390,68  7 975 023 430,86  

Standard Error   55 412,60  15 071,75  8 327,99  14 319,59  11 260,27  7 435,52  12 467,58  32 016,96  42 509,03  89 302,99  

95% Confidence Interval   108 608,70  29 540,63  16 322,85  28 066,41  22 070,13  14 573,62  24 436,46  62 753,25  83 317,69  175 033,85  

                          

                          

Efficiency Regression Estimator   3,52 1,14 1,47 1,37 9,09 19,46 7,56 1,35 1,20 2,79 
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5 Conclusions 

The overall accuracies for the long rains end-of-season Crop Type map and Crop Mask for the long rains are 
respectively 89% and 90%, which is higher than what was mentioned in the feasibility study (both 65%). Some 
classes such as wheat, maize and tea show good results (with F1-Score between 0.60 and 0.81) but for some 
individual crops (e.g. beans, green grams and peas), lower accuracies are reported.  

Overall, the user accuracy is relatively good, meaning that there are few commission errors in the products. 
The two maps are not contaminated too much by erroneous crop detection. Nevertheless, the producer 
accuracy of the two products is lower resulting in omission errors, which means that the classification has 
missed quit some cropped areas. A large improvement (+18%) is noted from the in-season to the end-of-
season with the addition of S2 images at the beginning and at the end of the season to better depict the start 
of the growing season and the late stage of the harvest. 

The low results obtained for these classes can be explained by the small size and the low number of usable 
fields (> 0.1 ha) associated with the training data. As a result, many fields are too small to be used for training. 
The limited number of small polygons for these classes results in heterogeneous training data and 
consequently low classification accuracies.  

Very good relative efficiencies for Maize, Wheat, Sugarcane and Tea with figures greater than 2 are to be 
noticed. For Beans, Sorghum, Green grams and Peas, the relative efficiencies are lower than 2.  
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Annexes 

 Stratification approach  

Stratification is useful in this context of crop mapping because it can reduce the amount of effort required 
for the field campaign substantially. By minimising the number of sample units in non-cropped areas, the 
field campaign can be executed more efficiently without losing precision. 

In many cases, the land cover map to be assessed or validated is directly used as stratification (Lowell and 
Jaton, 2000). This is a good approach to estimate commission errors in a binary classification but may be 
weak for other cases. If we have some information that quantifies the likely proportion of errors, for example 
a measure of landscape complexity, it can be a more efficient stratification for all types of errors. We shall 
choose a higher sampling rate in more difficult areas, where both the errors and their variances are higher. 

However, in this context, the field campaign and thus the stratification plan is required prior to producing 
the map. 

Experience has shown that a too complex stratification will not bring major improvement and that there must 
be a clear case for stratifying the AOI. A good stratification should reduce the variability within each stratum, 
and considering the complexity of cropping patterns, it may sometimes be difficult to accurately describe the 
reality. A too complex and insufficiently accurate stratification may be counterproductive and lead to 
substantial variability with wider 95% confidence interval of the resulting crop area estimates as compared 
with simple random sampling. A clear case for stratifying is when there are marked geographical differences 
in the landscape between areas that are cultivated versus areas for which there is little agriculture present. 
A potential approach is to separate between different cropping systems based on clearly defined 
characteristics such as (i) Agro-climatic conditions or (ii) on the identification of irrigated versus non-irrigated 
land.  

In cases where agro-climatic conditions or crop systems are difficult to identify based on available data, crop 
area/production statistics per administrative unit can be used. In this case, provided that the crop area 
statistics are sufficiently accurate, strata can be separated according to districts which are predominantly 
agricultural versus those in which agriculture is marginal. However, crop statistics at some administrative 
level should be used carefully as described by Sannier et al. (1998). Crop statistics and biophysical factors can 
be combined in a relatively complex analysis to stratify the area, but experience in Europe from the Regional 
Inventory programme of the MARS project in the 1990s (Taylor, 1997) showed that the more complex is the 
analysis put in place to stratify the area, the less efficient the stratification tends to be. In addition, the total 
number of strata should not be large because, even if the stratification allows to improve the efficiency of 
the sampling by reducing the number of sample units per stratum, the total number of sampling units may 
be larger if too many strata are present. Pragmatically, Cochran (1977, p. 134) recommends no more than 6-
8 strata in total.  

In conclusion, considering good practices from the literature and past experience, we recommend selecting 
no more than 6 to 8 strata. This is in line with the technical specifications, mentioning that if the AOI is not 
homogenous, it should be subdivided into strata from 2 to 5 strata, which are assumed to be homogeneous 
regarding climate and agro-ecological conditions (relief, soil, etc.) as well as agricultural practices (e.g., crop 
calendars).  
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 Field sampling strategy 

Two types of protocol exist regarding the collection of field data: 1) a probability sampling protocol and 2) a 
“windshield” survey with collection of data along the roads. A probability sampling design is essential for map 
validation and area estimation (Olofsson et al., 2013; Stehman et al., 2009), but this is less critical for 
collecting training data for satellite image classification. So alternatively, a selection of locations for training 
data can be a pragmatic and suitable choice, for example collecting data along roads (Gallego, 2018). The 
“Windshield survey” can complement the probability sampling protocol to provide a larger sample size for 
the training of the classification algorithms. 

In the following paragraphs, we first describe the probability sampling protocol and then the complementary 
windshield survey with the pros and cons of the two approaches. 

Probability sampling protocol  

Simple random, stratified random, clustered random and systematic designs are all examples of probability 
sampling designs. In simple random designs, classes covering a small portion of the population may not be 
adequately sampled. Clustered sampling is often used to reduce the costs of the collection of reference data 
but does not resolve geographic distribution problems. Stratified approaches overcome this drawback; 
therefore, the stratified random sampling of points is one of the most common approaches to assess map 
thematic accuracy but may not be the best option for assessing areas. Stratified systematic with random 
origin has the advantage of enhancing traceability and is a better solution for assessing areas. The main 
limitation of systematic sampling is that there are no unbiased estimators of the variance, and the simple 
random sampling variance is often used which would slightly overestimate the true value (Bellhouse, 1988). 

The provision of accurate area estimates requires some form of unbiased independent assessment of the 
map quality. The so-called “pixel counting” on classified images cannot be considered a sound approach for 
crop area estimation mainly because remotely sensed based crop and more generally land cover classification 
suffer from classification errors that affect each crop type or land cover class differently. This means that a 
specific crop or land cover type can be over-classified while another can be under-classified, thus over- or 
under-estimating the area of one versus the other. This was already pointed out by many in the scientific 
literature as early as Hay (1988) and Czaplewski (1992) and more recently by Olofsson et al. (2014). However, 
to be able to assess such bias in crop type maps, there is a requirement to use a probabilistic sample to 
ensure that the estimates can be produced directly from the probabilistic sample or from the combination 
of the probabilistic sample with the classified image.  

A probabilistic sample is one in which the probability of inclusion of a sample can be determined. It can 
typically be achieved through a random or systematic approach combined or not with a stratification as 
shown by the early implementation of satellite-based crop area estimation systems in the USA (Allen, 1990) 
and in Europe as part of the MARS project in the late 1980s and early 1990s by (Taylor, 1997). In both crop 
area estimation activities, the existing field survey data was combined with the satellite-based classification 
maps through a so-called regression estimator to provide unbiased crop area estimates.  

In summary, a probabilistic sample approach is needed for unbiased crop area estimate and will by default 
applied in the present service. Among the possible probabilistic approaches, we recommend a stratified 
systematic random sampling which combines benefits from both stratified systematic and random protocols.  

“Windshield survey” 

Current machine learning algorithm will perform best with large amount of training data. Collecting field data 
in a “windshield survey” along the road network as suggested by (Defourny et al., 2019) can provide large 
amount of field data with reduced effort. However, it does not constitute a probability sample because 
sample units are defined a priori (i.e. by the road network) and there is no way to calculate their probability 
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to be included in the sample. Therefore, this approach does not seem appropriate for providing reliable area 
estimates. In fact, the JECAM guidelines (JECAM, Guidelines for cropland and crop type definition and field 
data collection, 2018) recognises this limitation by suggesting that the windshield survey is insufficient: “It is 
however recommended that this sampling strategy be complemented by regular additional transect (set 2) 
using secondary roads and tracks to reduce the spatial bias brought about by roadside sampling” (JECAM, 
Guidelines for cropland and crop type definition and field data collection, 2018).  

Evidences of bias resulting from this type of survey can be found in a study performed by Gallego (2018). 
Based on data collected with a probabilistic approach (LUCAS - Land Use and Coverage Area frame Survey in 
Europe), the author indicates there could be a substantial bias when considering LUCAS points only in the 
close vicinity of roads (less than 100m). Results show that for some main crops such as wheat this may not 
be too problematic, but there could be more substantial effects for less represented crops such as barley and 
maize and particularly for Olive trees and vineyards as shown in Table 5. Yet, this study was carried out in 
Europe for which the road network is particularly dense, and therefore the bias is expected to be even larger 
in developing countries where road networks can be much sparser. 

Table 5: Weighted estimation of the proportion of major crops from all LUCAS points and from LUCAS points within 

100 m of a road. Gallego (2018) and Gallego, personal communication 

 
All LUCAS points Points within  

100 m of a road 

% bias 

Wheat 24.88 25.24 1.4 

Barley 14.63 14.28 -2.4 

Maize 12.31 11.94 -3.0 

Root crops 3.62 3.65 0.8 

Sunflower 2.50 2.53 1.2 

rapeseed 6.18 6.24 1.0 

fodder & temp grass 7.07 6.70 -5.2 

olive trees 5.83 6.04 3.6 

vineyards 3.75 3.97 5.9 

 

In conclusion, the “windshield survey” is not recommended for unbiased crop area estimates but the 
approach is perfectly suitable for the collection of additional training data, since the collection of field data 
for image classification does not necessarily need to be probabilistic.  
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 Sample size per stratum 

When using stratified sampling, the main goal is to maximise the efficiency of the stratification by optimising 
the sample allocation per strata with a view to (1) minimise the overall number of samples necessary (by 
reducing the number of samples for strata with little agriculture present) and/or (2) minimise the uncertainty 
of the resulting crop area estimates. A simple way is the use of equal allocation, but this is usually not very 
efficient. Proportional allocation (to the fraction of the total area covered by a given crop) is an option, but 
it will give disappointing results for classes considered important but covering a small proportion, e.g. crop 
types covering a small area present only in very specific strata.  

It is possible to estimate a suitable sample size for each stratum based on the expected acceptable error rate 
which can be referred to the error rate requested by the technical specifications and or previous test results. 
For example, it may be required that the area of wheat at the scale of the AOI should be estimated with an 
uncertainty that does not exceed 10% at 95% confidence interval. The standard error of the error rate can 
be calculated as follows: 

𝜎ℎ = √
𝑝ℎ(1 − 𝑝ℎ)

𝑛ℎ
 

where nh is the sample size for stratum h and ph is the expected error rate.  

This can be reworked to express the sample size nh as a function of ph and desired standard error 𝜎ℎ:  

𝑛ℎ =
𝑝ℎ(1 − 𝑝ℎ)

𝜎ℎ
2  

From Figure 16, it can be seen that for an expected 50% error rate, within a stratum, 100 samples would be 
required to guarantee a standard error of 5%, whereas the number of samples would need to be increased 
by a factor of four if the accepted standard deviation is divided by a factor of 2. On the other hand, if the 
expected error rate is 15%, only 51 samples would be necessary with a 5% standard error. A similar approach 
was adopted to determine the sample size for assessing the accuracy of CORINE Land Cover (CLC) 2006 and 
CLC 2000-2006 changes (Büttner et al., 2012). 

 

Figure 16: Number of sample points as a function of the expected error rate for two accepted standard error values 

(after Wack et al., 2012) 
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If we have a high priority for a class, the Neyman allocation rule is a better alternative (Cochran, 1977): 

𝑛ℎ  =  𝑛 ∗  (𝑁ℎ  ∗  𝜎ℎ ) / [ 𝛴 ( 𝑁𝑖  ∗  𝜎𝑖 ) ] 

where 𝑛ℎ is the sample size for stratum h, n is the total sample size, Nh is the population size for stratum h, 
𝜎ℎ is the standard error of the error rate of stratum h, i extends to all strata within the AOI. 

According to (Stehman, 2012), Neyman optimal allocation should be preferred for estimating area as well as 
overall accuracy, whereas equal allocation is effective for estimating user's accuracy. For our purpose, it 
would be difficult to apply Neyman allocation for each crop type, but it can be used for generically for crop 
areas optimising allocation where agriculture represents a large proportion of the area. 

In practice (Särndal et al., 1992, pp. 267 and 407) recommend a minimum within-stratum sample sizes of 10-
20; (Cochran, 1977, p. 134) recommends minimum within-stratum sample sizes of 20; and for temperate 
forest inventories (Westfall et al., 2011) recommend within-stratum sample sizes of at least 20. 
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 High Spatial Resolution Optical data: Sentinel-2 

Copernicus Sentinel - data are now available since 2015 for Sentinel 2A and since 2017 for Sentinel-2B. They 
provide multispectral data, 13 bands with a spatial resolution of 10, 20 and 60 meters with a large swath. The 
high-revisit frequency of acquisitions (maximum 5 days) allows to build dense times series of high-resolution 
optical data. However, the impact of clouds (and cloud shadows) can decrease drastically its high frequency 
and requires the use of performant cloud detection algorithms.  

Times series of Sentinel-2 data are used to compute pixel-based classification at 10 meters. To perform these 
tasks, the pre-processing of the Sentinel-2 data must ensure a high confidence cloud (and cloud shadows) 
detection and a high geometric temporal alignment. The pre-processing step will create a set of Analysis 
Ready Data (ARD) used for the generation of crop type and mask products. 

For Sentinel-2, we consider currently only L2A provided by ESA (and generated by Sen2Cor) with surface 
reflectance and scene identification (cloud and cloud shadow masking mainly). As we know that the quality 
of the scene identification and mainly the cloud and cloud shadow identification is not optimal (see Figure 
17), we propose the following alternative scenario: if the quality of cloud identification has a strong impact 
on the quality of the segmentation and the pixel identification, we will perform the L2A generation with the 
Multi-sensor Atmospheric Correction and Cloud Screening (MACCS)-Atmospheric & Topographic Correction 
(ATCOR) Joint Algorithm (MAJA). 

   
(a) (b) (c) 

Figure 17: Cloud cover and native cloud masking within a Sentinel-2 image: (a) clouded S2 image; (b) native 

(sen2core) cloud (yellow) and cloud shadows(blue) masks, and (c) S2cloudless cloud masking result. 

The native scene identification mask delivered with the sentinel-2 data has some drawbacks; 1) coarse mask 
with pixels of 60 meters, 2) not optimal cloud detection and 3) not precise matching of cloud shadows. An 
alternative masking procedure can be the following: using the S2cloudless9 algorithm in combination with an 
adapted F-mask algorithm. When using the algorithm, the consortium found that in terms of speed and ability 
to detect (even the smallest) clouds, the S2cloudless algorithm yielded excellent results. Also, a test 
performed by the S2cloudless developers indicated good results when compared to other algorithms like 
Sen2cor, MAJA and F-mask10 (see Figure 17 (c)). 

The drawback of the S2cloudless algorithm is that it does not provide masking for other disturbances, mainly 
being cloud shadows. Our adapted F-mask algorithm can be fed by the result of the S2cloudless algorithm 
and provide the other masks. Our F-mask algorithm can predict the cloud shadows based on cloud clumps, 
the sun and satellite angles and the presence of darker pixels. Together a reliable mask can be generated. 

                                                           

9 https://github.com/sentinel-hub/sentinel2-cloud-detector 

10 https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 

https://github.com/sentinel-hub/sentinel2-cloud-detector
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13
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The second challenge to tackle with pre-processing is to reach high geometric temporal alignment between 
scenes. It is known that small shifts between S2 scenes occur (especially compared between S2-A and S2-B), 
which can be non-trivial especially for smaller fields within range of the MMU. In order to ensure perfect 
alignment, shifts can be applied to (parts of the) scene. It uses specific bands from the scene and a template 
to match features. The calculations are performed on a Google Graphics Processing Unit (GPU) box and yields 
a point-grid, whereby each point indicates the shifts applicable for that area between S2-A and S2-B and 
when available against better reference data (see Figure 18). Shifts can be non-consistent throughout the 
scene, so they are applied in a later stage locally in a dedicated non-linear warping procedure. 

 

 

Figure 18: Example of XY shifts in meters in a grid for a Sentinel-2 scene 

From the Sentinel-2 L2A product, we will keep for the following processing only the 10- and 20-meters bands 
(10 bands). In order to increase the usability of the Sentinel-2 data, we will resample the 20 metres bands to 
10 metres with a zooming algorithm based on Fourier transform using a super-resolution algorithm provided 
by (Brodu, 2017) and its application to Sentinel-2 images. A reference open-source implementation already 
exists and is available in SNAP. After this step, we provide Sentinel-2 data with the 10 bands at 10 metres. 

All the quality masks are combined and processed to generate a Usable Data Mask (UDM) which identifies 
the clouds, the no data, snow, the pixel quality (defective, saturated, etc.). 

For a schematic overview of the points mentioned above, see Figure 19. 
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Figure 19: Overview of Sentinel-2 (and Landsat-8) pre-processing 

For an overview and mapping total cropped area, cloud-free composites can be an adequate input. Based on 
ARD, we will provide monthly cloud-free composite based on the Weighted Average Synthesis Processor 
(WASP) algorithm (Hagolle et al., 2018) developed during the ESA Sentinel-2 for Agriculture project and 
adapted to S2-ARD and Landsat-8 ARD data. These cloud-free composite will be compared to the data 
provided by the Copernicus Sentinel-2 Global Mosaic (S2GM) service11 during a small benchmark phase. 

To sum up, the optical High Resolution (HR) ARD data will have the following characteristics: 

 Pixel content: Surface reflectance 

                                                           

11 https://land.copernicus.eu/imagery-in-situ/global-image-mosaics/node/16 

https://land.copernicus.eu/imagery-in-situ/global-image-mosaics/node/16
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 Spatial resolution: 10 metres 

 Geographic projection / reference system: UTM 37S (EPSG: 32737)  

 Gridding: MGRS grid 

 Spectral characteristics: 10 bands for Sentinel-2 and 6 bands for Landsat 8 

 UDM mask with cloud, snow, pixel quality 

 GeoTIFF format for raster and mask 

This dataset will be accompanied by: 

 A set of monthly cloud-free composite over the vegetation period 

 A set of functions to compute on-the-fly the main radiometric indices from the ARD products 

Additional high resolution optical data can be integrated in this dataset for specific areas where the cloud 
coverage can decrease the density of the time series. For example, it may be possible to get access to Planet 
data that is made freely available in monthly cloud-free composites through the Norway’s International 
Climate & Forests Initiative (NICFI). Planet data does not record the Short-Wave Infra-Red (SWIR) band that 
is available on Sentinel-2, but the high resolution (3.7m) can provide additional information.  

For the optical scenes with small clusters of missing values due to clouds, values can be restored with SOMs 
as developed by Kohonen et al. (2001). When filling clusters with missing data is not feasible or useful with 
SOMs due to large gaps, values at a certain time-interval are derived from previous and later reads. These 
steps can be done to ensure a continuous temporal signal with a fixed interval. 
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 High Spatial Resolution SAR data: Sentinel 1 

Sentinel-1 mission is composed of two identical SAR satellites (1A and 1B) operating at C-band (5.405 GHz, 
5.6 cm wavelength). Due to the 12-day revisit, this mission offers the possibility to have a 6-day revisit 
maximum in full-operation scenario (when both satellites cover the same area). The acquisition scenario is 
driven by policy and science requirements. For land surface, the satellites operate in the Interferometric 
Wide swath (IW) mode with dual polarisation acquisition. The density of IW acquisitions is optimised over 
European area. Sentinel-1 time series will be used to discriminate land cover classes further based on their 
temporal behaviour (backscatter), consequently improving accuracy in areas with an extensive amount of 
cloud cover. Copernicus generally provides level-1 products Single-Look Complex (SLC) and Ground Range 
Detected (GRD). In many cases, level-0 (Annotated Raw) data is available for users who want to pre-process 
SAR by themselves. 

Sentinel-1 image processing, from level 1.1 SLC product to a calibrated map product, will be done on virtual 
machines running ESA SNAP (Sentinel Application Platform), using tested SNAP processing graphs to run the 
required processing steps for each processing chain. The outputs will be the calibrated Sentinel-1 VV and VH 
backscatter images, polarimetric entropy and alpha, geometry information (local and global incidence angles) 
and meta-information (map projection, grid size, etc.). Interferometric coherence requires two SLC input 
images with the same incidence angle and path. To minimise temporal decorrelation, acquisition time 
interval should be minimum, preferably 6 days when both Sentinel-1A and Sentinel-1B are available. This 
only occurs in some areas North of the Equator; most areas are recorded with 12-day interval. Interferometric 
processing needs precise sub-pixel co-registration and phase preservation of the two input images. 
Combined Sentinel-1A and -1B interferometry, only for the 6-day areas, requires along-track alignment / 
mosaicking (called Slice Assembly in SNAP) in order to ensure sufficient overlap. 

We propose three SLC image processing procedures for the different outputs: a) the VV, VH backscatter map 
products, b) dual-pol polarimetric output and c) the interferometric coherence calculation. The third one 
requires two SLC images as input with (almost) the same overlap. 

a) Backscatter ortho product: calibrated, ortho- and map-projected backscatter. SLC processing requires 
some extra handling of sub-swaths in respect to GRD input, but ortho-output will be the same (see Figure 
20, left). 

b) Polarimetric processing. Sentinel-1 is not a full polarimetric sensor, as it has only two polarisations. 
Nevertheless, VV and VH phases are related, making dual-polarisation polarimetry possible. The SNAP 
processing provides polarimetric tools for calculating a 2 x 2 scattering matrix (C2) and dual-pol 
Entropy(H)-Anisotropy-Alpha decomposition. These parameters give information about the dominant 
scattering mechanism and type of scatter. This information improves image classification (see Figure 20, 
right). 

c) Interferometric processing calculates phase differences between two overlapping SLC images from the 
same satellite path. Interferometric coherence is an indicator for crop growth or cultivation changes 
(see Figure 21). 
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S1 SLC ortho   S1 Dual-pol polarimetry 

·  Read image and metadata 
·  Apply precise orbit 
·  Radiometric Calibration 
· Terrain Observation with Progressive 
Scans (TOPS) Deburst 
·  Multi-looking 
·  Terrain Correction 

  ·  Read image and metadata 
·  Apply precise orbit 
·  Radiometric Calibration 
·  TOPS Deburst 
·  Polarimetric C2 Matrix Generation 
·  Polarimetric Speckle Filter 
· Polarimetric H-A-Alpha decomposition 
·  Multi-looking 
· Terrain Correction 

Figure 20: Sentinel-1 IW single image processing flows: SLC calibration and ortho-processing chain (left) and 

calculation of polarimetric entropy, alpha and anisotropy (right). 

 

S1 SLC bi-temporal coherence 

Image [t] Image [t-1] 

·  Read image and metadata 
·  Apply precise orbit 
·  TOPS Split 
·  [ Slice Assembly ] 

·  Read image and metadata 
·  Apply precise orbit 
·  TOPS Split 

·  Coregistration 
·  Coherence calculation 
·  TOPS Deburst 

·  TOPS Merge 
·  [Multi-looking 
·  Terrain Correction 

Figure 21: Sentinel-1 IW interferometric coherence calculation: splitting input images into sub swaths, apply Slice 

Assembly mosaicking if necessary (for full overlap), co-register sub swath pairs, calculate inSAR coherence, merge 

sub swath coherence images and apply ortho-processing 

All products from the processing flows acquired during the growing seasons provide signatures that give 
temporal information. Overall statistics, such as temporal minimum, maximum, mean (see Figure 22) and 
standard deviation of backscatter (see Figure 23), polarimetric parameters and coherence can help 
discriminating various land cover types, cropping dynamics, inundation/flooding information. 
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Figure 22: Example of multi-temporal min-mean-max of 

all VH images acquired during the long wet season 

March-August 2019 over the Nairobi area 

 

Figure 23: Example of multi-temporal standard 

deviations of VV and VH images acquired during the 

long-wet season March-August 2019 and the small wet 

season Oct-Dec2019 over the Nairobi area 

The variations of radar (and optical) parameters may give useful information of particular phases during the 
crop growing season: soil preparation, increase of biomass, flowering, ripening and harvest. As an example, 
optical (Normalized Difference Vegetation Index (NDVI)) and radar (VH/VV, VH and VV) temporal signatures 
of some crops are shown in Figure 24. These crops show a clear start and end of their growth. Unfortunately, 
not every crop shows such clear temporal behaviour, this depends on crop type and how open the vegetation 
structure is. Open structures with a large contribution of the ground component show a less explicit 
signature. 
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Figure 24: NDVI and SAR signatures of some crops in France. NDVI, VV and VH show a clear increase in June and a 

decrease in October, related to crop growth. Other backscatter changes are not related to biomass but to soil 

roughness, wetness and land cultivation (Feb-Mar) (Veloso et al., 2017). 
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 Crop Type Classification method 

The different approaches available for the classification of crop types from available satellite imagery are 
described in the following paragraphs. 

Basic supervised classification 

This method can be applied in low complex situations with only a few main crops to be identified and where 
crop patterns are simple e.g., large areas of a single crop. The first step in a supervised classification is the 
identification of training data for the required classes from reference data collected on the field. Based on 
the training data, spectral signatures are calculated for each class. These class spectral signatures are then 
used to classify the complete image or scene. The most common supervised classification methodology is 
Maximum Likelihood (ML). ML is widely used and is a parametric classifier that is based on statistical theory. 
More advanced classifiers such as RF (Random Forest) and SVM (Support Vector Machine) are available as 
well, which are both machine learning algorithms. RF is the preferred method as high accuracy is generally 
reached with this algorithm as well as genericity. Many crops have a unique spectral (optical) or backscatter 
(SAR) temporal signature that allows for discrimination of various crops within an AOI. Rice and corn are, for 
example crops which are easy to detect with a degree of high accuracy with this method. In this case, a 
“traditional” pixel-based supervised classification is sufficient and saves precious time, because no effort is 
needed to create additional training data for machine learning algorithms. If the area is more complex (e.g., 
many crops, smaller fields) machine learning algorithms like RF will be applied. 

Advanced supervised classification: Machine learning 

In complex cropping environments (e.g. many crop types, small fields, inter-cropping), more advanced 
classification methods can yield better results than basic supervised classification methods. There are various 
machine learning (ML) algorithms available to the consortium that can be applied operationally. We have a 
Python-based Temp-CCN method as well as various ML methods in ORFEO Toolbox called IOTA2.  

The temporal CNN (originally developed by Pelletier et al. (2019b)) can be deployed with both pixel-based 
and object-based inputs. This model uses the temporal signal of pixels in sampled crop fields in a growing 
season as training data and applies a Deep Learning (DL) architecture including several convolutional layers 
(see Figure 25). 

 

Figure 25: Temporal Convolutional Neural Network (TempCNN) proposed by (Pelletier et al., 2019b) mixing spectral 

and temporal convolution to improve crop mapping 

The input for the DL architecture will be generated by the fieldwork efforts and applied on a stack of 
unlabelled satellite imagery to predict the crop types. TerraSphere has implemented this method to map 
complex cropping patterns in parts of Myanmar in 2018 and 2019. Another example of a large-scale 
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implementation of this method is the Monash Vegetation Map where the methodology was successfully 
applied for an area of 227,000 km² in Australia (Pelletier et al., 2019a). 

IOTA2 is a processing chain which uses the Orfeo Tool Box main steps for its classification process. It allows 
a choice of classifiers like Support Vector Machine (SVM) and Randon Forest (RF). A ratio can be chosen that 
will split the fieldwork dataset into training & validation. IOTA2 calculates many different indices (e.g. NDVI, 
NBUI, NDWI) to add to the time-series of Sentinel-2 data. A number of other global parameters can be set, 
like gap filling (allowing to fill the no-data areas on your S2 acquisitions with other S2 acquisitions, to obtain 
continuous time series), and auto context (which adds a segmentation step to the process).  

All available ML algorithms as described above are thoroughly tested on parts of the Kenya AOI during the 
2021-2022 growing season, and the IOTA2 (RF) classifier continuously yielded the best results. Therefore, 
IOTA2 is currently our default classifier for the coming 2022-2023 growing seasons in Kenya. 

Object-based classification 

Segmentation of satellite data into objects can be a first step for both previous methodologies. It can be 
applied best in case enough optical data is available. This is explained by the fact that segmentation results 
on SAR data do not generally yield good results in cases of small field sizes (as can be expected in the AOI’s) 
due to speckle phenomenon. It also works best in less complex cropping patterns where there are large areas 
of single crops. Object-based classification can enhance crop-mapping since signals within the object can be 
grouped and outliers within objects are filtered. This leads in general to smoother and better crop maps with 
less “noise” of misclassified individual pixels. The first step is to segment pixels into vectorized boundaries 
representing a crop field, or a group of fields with the same crop. These polygons can then be used to get 
aggregated (field) data and feed this data to classification algorithms. In order to train a powerful model, 
much sample data is needed in terms of labelled polygons. Examples of open-source implementations of 
such segmentation can be found here12. The results of these different steps will be combined in one map. A 
more technical description is given in Persello et al. (2019). 

Considering the expected field size that are expected to be rather small as compared to the Sentinel-2 spatial 
resolution, we do not anticipate applying an object-based approach over the entire AOI. However, a 
segmentation model will be applied to facilitate the visual interpretation of the segments prior to the field 
work. The segmentation model can be trained based on our in-house Mask-RCNN, based on original Mask-
RCNN (He et al., 2017) (see Figure 26), which runs on Sentinel-2 chipped imagery. In the case of insufficient 
data availability, an already trained segmentation algorithm can be run and validated where it yields results 
in the contexts of the AOIs.  

                                                           

12 https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentation/ 

https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentation/
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Figure 26: Mask R-CNN framework for instance segmentation (He et al., 2017) 

Mitigation measures for prolonged cloudiness 

Limited availability of optical satellite data (Sentinel-2/Landsat-8) can be expected for some AOIs. Yet we aim 
to use every bit of cloud-free image part because the MMU of 0.04 ha is largely dependent on it. The use of 
Self-Organising Maps (SOMs) helps to make cloud-free composites by filling gaps with interpolated values. 
The use of SAR (Sentinel-1) data is another method that allows for crop mapping when little optical data is 
available.  

Self-Organising Maps 

Missing optical scene parts due to clouds and shadows can be restored with SOMs. This can be an effective 
strategy when there is enough optical data available in the vicinity (temporally) of the image to be restored, 
or if other data sources (Landsat-8) are available. This will allow for a temporal denser time series of cloud-
free optical data as a basis for classification. The consortium have applied this method successfully during 
the previous growing seasons in Kenya, where nearly 100% cloud-free mosaics were produced for each 
growing season. This even made the use of Sentinel-1 data redundant for those seasons. As each season is 
unique, we realise the situation with respect to cloudiness can be less favourable for the next seasons. 

The use of SAR data 

Sentinel-1 data are always available throughout the entire growing season. Besides the guaranteed 
availability, some studies even indicate that a multi-sensor approach (combining S1 and S2) yields better 
results in crop mapping than using only S1 or S2 (Kussul et al., 2015; Van Tricht et al., 2018). The Sentinel-1 
derived data is two-fold: (1) continuous and smoothed Gamma0 backscatter signals to generate a temporal 
signature in VV and VH and (2) temporal coherence markers indicating change. The change can be due to 
management like ploughing, harvesting or due to crop phenological characteristics like crop emergence, 
flowering or senescence. These extra signals help to better discriminate between crops. Therefore, we 
anticipate the use of SAR data not only in cases where there is no alternative, but also as additional data 
source. The combined use of S1 and S2 is possible in the various classification methodologies described 
above, where S1 backscatter as well as coherence can be additional layers in the data stack to be classified. 
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 Validation strategy 

The last step in the production of the crop mapping consists in analysing the collected field samples in order 
to draw conclusions about the accuracy of the products (in-season and end-of-season crop masks and crop 
type maps). Since the sampling presented in section 2 is well spatially distributed over the study area, 
segments can randomly split into training data for the classification (75%) and validation (25%) sets. This split 
is done at the field parcel level (i.e., within segments) and not on individual pixels, to ensure the 
independence of the validation samples.  The proportion of validation samples may be increased if sufficient 
training data is obtained. 

Thematic accuracy is presented in the form of an error matrix made from the results of the sample units 
visited in the field or visually interpreted for non-cropped areas. As explained in Selkowitz and Stehman 
(2011), the sampling intensity (defined as the proportion of the population that is been sampled, not to be 
confused with sampling size that refers to the number of sample units) resulting from the stratified 
systematic sampling approach is not equal for all strata. These differences should be accounted for by 
applying a weight factor to each sample unit within a given stratum. Therefore, a correction for the sampling 
intensity will be applied to the error matrices produced following the procedure described by Selkowitz and 
Stehman (2011) and applied by Olofsson et al. (2013) leading to a weighting factor inversely proportional to 
the inclusion probability of samples from a given stratum. Not applying this correction could result in 
underestimating or overestimating map accuracies. This was already applied successfully as part of the 
Copernicus Land lot 1 External Validation Contract. 

In addition, sampling weight factors are also needed to correct for imperfections in the sampling scheme that 
might lead to bias between the number of samples and the size of the stratum (reference population). In 
other words, the purposes of the weight factors are to compensate for unequal probabilities of selection and 
to compensate initial sampled units that could not be surveyed due to accessibility issues. For example, this 
correction is required because there are less samples in the “other areas” strata (i.e., lower sampling 
intensity) than those in the “cropland” strata for an equivalent stratum area. Once the field campaign is 
finalised, final sampling intensities will be calculated for each stratum based on the ratio between the number 
of samples included in the survey and the size/total area of the stratum considered and the weight factor (p) 
will be calculated according to the following equation: 

𝑝̂𝑖𝑗 = (
1

𝑁
) ∑

1

𝜋ℎ
∗

𝑥∈(𝑖,𝑗)

 

Where i and j are the columns and rows in the error matrix, N is the total number of possible units 
(population) and 𝜋ℎ

∗  is the sampling intensity for a given stratum. 

Thematic accuracy is usually assessed based on the construction of a confusion or error matrix for which it is 
crucial that unequal sampling intensities as described above are accounted for as described by Olofsson et 
al. (2014). Then, the construction of the error matrix is described as illustrated in Figure 12 for 5 thematic 
classes. 
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Figure 27: Confusion Matrix for Accuracy Assessment of thematic map product 

Referring toFigure 27, let us assume represents any given class of [i, j, k, l, m], the following accuracy 
metrics can be calculated:  

 The Overall Accuracy or Recognition Rate is measured by the sum of the diagonal of the Confusion 

Matrix divided by the total number of controlled points: 𝑂𝐴 𝑜𝑟 𝑅𝑟 = ∑ (αα)/T𝑚
𝛼=𝑖 . The Recognition 

Rate or Overall Accuracy assesses the overall agreement between the classified and reference data 

set. However, for single class themes, it does not necessarily provide a realistic assessment of the 

quality of the map produced because there can be substantial unbalance between omission and 

commission errors. 

 Therefore, the row and column totals and the diagonal of the Matrix are used to assess two types of 

accuracy, the User’s and Producer’s Accuracy: 

o Producer Accuracy for the  class = αα/Cα is a measure of omission error. For instance, an 

observation has been identified as Tree Covered in the validation set, but has been classified 

as another class: it has been omitted from the forest class.. 

o User Accuracy for the  class = 𝛼𝛼/𝑅𝛼  is a measure of the commission error (or 

contamination risk): errors due to the wrong allocation of an observation to a class. For 

instance, an observation is classified as forest, but identified as belonging to another class 

during the validation process: this observation has contaminated another class.  

The standard error of the overall, producer and user accuracies can be calculated as follows: 

𝜎ℎ = √𝑉𝑎𝑟ℎ = √
𝑝ℎ(1 − 𝑝ℎ)

𝑛ℎ
 



                                                                                                                                                
   

COPERNICUS4GEOGLAM 
Reference: End-of-season mapping - Kenya - long rains season – 2023 - Issue 2.1 – 29/11/2023  43  

Limited distribution/Diffusion limitée © 2021 Groupe CLS. All rights reserved. Proprietary and Confidential.  

where nh is the sample size for stratum h and ph is the expected error rate. 

The total standard error is then the square root of the sum of the variance times the square of the area D of 
each stratum: 

𝜎𝑇𝑜𝑡𝑎𝑙 = √𝐷ℎ
2. 𝑉𝑎𝑟ℎ 

The 95% confidence interval (CI95%) which indicates that the “true “ value has a 95% probability to be included 
within the calculated range, is then defined as: 

𝐶𝐼95% = ±1.96 ∗ 𝜎𝑇𝑜𝑡𝑎𝑙 

The same approach will be adopted for the in-season as well as end-of-season crop masks and crop types 
maps. 
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 Area estimate bias correction 

Crop area estimates can be derived directly from the field data alone using the so-called direct expansion 
method as long as the data has been collected based on a probabilistic sample or for which a suitable method 
was used to correct any potential bias. Therefore, early area estimates (Direct expansion estimators) can be 
provided as soon as the results from the field campaign have been collated and analysed event before the 
classification of the satellite imagery. 

Assuming a probabilistic sample or a sample for which the bias has been corrected following the formulae 
described in the previous annex in which a weight factor is applied to each sample unit to ensure sampling 
intensity has been accounted for, the estimate of proportion (y) of class (c) and its variance are given by: 

𝑦̅𝑐 = ∑
1

𝑛
𝑦𝑖

𝑛
𝑖=1  and 𝑣𝑎𝑟(𝑦̅𝑐) = (1 −

𝑛

𝑁
)

1

𝑛(𝑛−1)
∑ (𝑦𝑖 − 𝑦̅𝑐)2𝑛

𝑖=1  

where: yi is the proportion of segment i covered by class c, N is total number of segments in the region, n is 
number of segments in the sample. The proportion of the study region sampled (n/N) is the sample fraction. 
The estimate of class area (Z) and variance in study area (D) are as follows: 

𝑍̂𝑐 = 𝐷 ∗ 𝑦̅𝑐 and 𝑣𝑎𝑟(𝑍̂𝑐) = 𝐷2 ∗ 𝑣𝑎𝑟(𝑦̅𝑐) 

where D is the area of the stratum. It is better to compute the estimates first as proportions rather than as 
absolute areas because this automatically takes account of errors resulting from small, localised variations in 
the scale of segment maps and drawing or digitising errors. The Direct expansion estimators are defined 
based on the results of the field campaign alone and calculated for each stratum present in the AOI. The total 
estimate just corresponds to the weighted average of the proportions according to the area covered by each 
stratum. The standard error for the whole area is then the square root of the sum of the variance times the 
square of the area for each stratum:  

𝜎𝑇𝑜𝑡𝑎𝑙 = √𝐷ℎ
2. 𝑉𝑎𝑟ℎ 

where 𝐷ℎ  is the stratum area. The 95% confidence interval is +/- 1.96. 𝜎𝑇𝑜𝑡𝑎𝑙. 

However, the confidence interval of the estimate derived from direct expansion is likely to be relatively large. 
To improve the precision of the estimates, field segment data can be combined with classified satellite 
imagery. In this latter case (i.e., using the classification map), a so-called Model Assisted Regression (MAR) 
estimator can be applied. MAR is more reliable than any other area estimation methodology as it provides 
both an area estimation per cover type together with an indication of its uncertainty. 

In brief, MAR relies on the combination of area estimates made at the segment level for both ground data 
and classified satellite imagery. The observation is paired, and a regression analysis is performed as illustrated 
in Figure 28.  
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Figure 28: Relationship between the proportion of wheat within each segment from the digital classification (p) and 

ground survey (y) in the UK (after Taylor, 1997). 

The MAR estimator methodology is fully described in Taylor (1997). The MAR estimator yreg is calculated 
based on the following equation: 

𝑦𝑟𝑒𝑔 = 𝑦̅ + 𝑏 ∗ (𝑝̅𝑝𝑜𝑝 − 𝑝̅) 

where  is the mean field data sample value, b is the slope of the regression line, 𝑝̅𝑝𝑜𝑝 is the proportion of 

pixels classified as the crop in the whole of the region of interest and 𝑝̅ is the classified image mean sample 
value. The variance of the estimate is calculated as: 

𝑣𝑎𝑟(𝑦̅𝑟𝑒𝑔) =
1

𝑛
𝑣𝑎𝑟(𝑦)(1 − 𝑟𝑝𝑦

2 ) 

Where 𝑟𝑝𝑦
2  is the regression coefficient. 

Therefore, the higher the regression coefficient the smaller the variance and as a result the precision of the 
estimate. Experience for the MARS programme (Taylor, 1997) showed that high classification accuracy was 
correlated with high regression coefficient. 

The estimation of land cover type areas obtained by such procedure can be very variable from pixel counts 
because image classification is affected by misclassification errors affecting the classes. Area estimates 
derived from the MAR estimator method are corrected from misclassification errors whilst exhibiting a more 
precise estimate than that of the direct expansion estimate thanks to the complete coverage provided by the 
image classification. 

In summary, direct expansion estimates are unbiased, but suffer from high sampling error, pixel counts from 
classified satellite imagery are biased but have no sampling errors and the combination of ground data and 
classified imagery are unbiased and exhibit a reduced sampling error. 

The efficiency of the MAR estimator is estimated by the relative efficiency (nreg), which is the ratio of the 
variance from the MAR estimator method and the direct expansion estimate which simplifies to:  

𝑛𝑟𝑒𝑔 =
1

1 − 𝑟𝑝𝑦
2  

During the MARS project, it was shown that relative efficiency above 2 could be obtained with single date 
imagery. Nowadays, thanks to the availability of multi-temporal image coverage, higher classification 
accuracy could be achieved resulting in reduction of variance by a greater factor. For land cover types that 

y
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are very distinct such as tropical rainforest, very high relative efficiency (i.e. reduction of the uncertainty) can 
be obtained with the Regression Estimator as shown by Sannier et al. (2016). In their study of forest cover in 
Gabon the Authors reported relative efficiency close to 60 as illustrated in Figure 29 in which there is a 
substantial reduction in the error bars shown when comparing the direct expansion with the MAR estimates. 
In other words, to obtain the same level of uncertainty with the direct expansion i.e. without using the EO-
based forest cover map, the sample size would need to be increased by a factor of 60. The 95% confidence 
interval of the direct expansion estimate is around 2% of the total area of Gabon when it is reduced to 0.25% 
for the regression estimate. It is also worth noting that this is a rare case for which the pixel count from the 
map is relatively close to unbiased estimates considering that it is invariably contained within the 95% 
confidence intervals bounds of the, most precise, MAR estimates. 

 

Figure 29: Comparison of Direct Expansion, Map area Statistics and Regression estimates for forest cover in Gabon 

in 1990, 2000 and 2010 and associated 95% confidence intervals as error bars. 

One of the issues with the regression estimator as described above is that it is potentially very sensitive to 
the quality of the linear regression which is sometimes poorly reflected by the R² as shown in the example 
below (see Figure 30). 

  

(a) (b) 

Figure 30: Illustration of the importance of the quality of the linear regression with (a) all observations and (b) one 

observation removed (X and Y axes are respectively the proportion of the land cover for each segment in the 

ground and classified data).  
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A slightly adapted estimator is also available in the form of the Generalised Regression (GREG) estimator 
described by (Särndal et al., 1992, sec. 6.5) which focuses on the average of the differences from each 
observation to the mean of observations: 

𝜇̂𝑔𝑟𝑒𝑔 =
1

𝑁
∑ 𝑦̂𝑖

𝑛

𝑖=1

−
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

with variance: 

𝑣𝑎𝑟̂(𝜇̂𝑔𝑟𝑒𝑔) =
1

𝑛(𝑛 − 1)
∑(𝜀𝑖 − 𝜀)̅2

𝑛

𝑖=1

 

where N is the number of map units, n is the reference set sample size, yi is the observation for the ith 

reference set sample unit, 𝑦𝑖̂ i is the map class, 𝜀 =  𝑦𝑖̂ − 𝑦𝑖, and 𝜀̅ =
1

𝑛
∑ 𝜀𝑖

𝑛
𝑖=1 . 

This latter estimator has the advantage of not being sensitive to the quality of the linear regression but could 
potentially provide an estimate with a larger confidence interval compared with the direct method when the 
EO-based map is of poor quality for the crop type considered. Such an approach was applied by Sannier et 
al. (2014) for estimating forest area and forest area change but could also be easily applied to crop types. 

Therefore, considering all the factors outlined previously in the previous sections, the following approach will 
be adopted for providing crop area estimates depending on the level of complexity as described in the 
feasibility study (D1.1) : 

 Direct expansion and Regression estimates as outlined by Taylor (1997) will be applied based on the 
surveyed segments 

 In case a substantial number of segments cannot be surveyed, a bias correction adapted from Brand et 
al. (1999) and Simms et al. (2016) may be applied, but it should still be possible to provide a direct 
expansion and Regression estimates as outlined by Taylor (1997) once a bias correction has been applied 

Finally, it should also be stressed, that three sets of crop area estimates will be provided instead of two as 
laid out in the tender specifications: 

 Direct expansion estimates as soon as the field campaign has been completed. 

 In-season improved crop area estimates integrating the in-season maps. 

 End-of-season final improved crop area estimates integrating the end-of-season map. 

 

 

 
 


