DB-ALM Protocol n° 184 : LuSens Assay
Skin Sensitisation & Allergic Contact Dermatitis

The LuSens assay uses a luciferase reporter cell line (LuSens cells) based on the activation of the antioxidant response element that can be used to assess the intracellular cysteine reactivity of a substance.

Résumé

Rationale

The LuSens assay is an in vitro method for the identification of skin sensitizers using a genetically modified keratinocyte cell-line (LuSens, Ramirez et al., 2014; Bauch et al. 2012). It employs a luciferase reporter gene under the control of the antioxidant response element (ARE) and hence monitors Nrf-2 transcription factor activity. The measured endpoint is the up-regulation of luciferase activity after 48 h of incubation with test substances. This up-regulation is an indicator for the activation of the Keap1/Nrf2/ARE signaling pathway (Ade et al. 2009; Natsch 2012; Natsch and Emter 2008; Vandebriel et al. 2010).

In order to conclude on the skin sensitization hazard of a test substance, a LuSens experiment comprising at least two, but a maximum of three independent repetitions* needs to be carried. In a valid repetition (i.e. meeting all acceptance criteria), sensitizing potential of the substance is indicated if the luciferase activity equals or exceeds a 1.5 fold induction compared to the vehicle control in 2 (or more than) consecutive non-cytotoxic tested concentrations (viability equal or above 70%), whereby at least three tested concentrations must be non-cytotoxic. The third repetition is only required when the first two repetitions are not concordant (i.e. one repetition is positive and the other is negative, not indicating sensitizing potential). If the first two repetitions of an experiment are either positive or negative, the experiment is completed.

*repetition and test are synonyms in the LuSens protocol

Applicability Domain

As the LuSens assay addresses one key event in the sensitization process, primarily reactivity with cysteine residues of a protein, but subsequently also the activation of the ARE dependent gene expression in keratinocytes, other modes of action serving the key step 2 of the Adverse Outcome Pathway (AOP) of skin sensitization may be missed (OECD, 2012). It is a cell based assay and as such requires the cells to be in an aqueous medium, in principle all water or DMSO soluble test substances can be tested in the LuSens assay. However, the need of an aqueous medium can pose solubility problems for lipophilic substances particularly at higher doses. The substances can be solubilized using up to 1% DMSO as a solvent, a concentration not inducing toxic effects in the cells. As a luminescence based assay, any substance that can influence the luciferase protein or quench/increase luminescence may interfere with the assay. However, it is expected that only few substances would do so.

The cells have a relatively low metabolic capacity and correct assessments of pre- and pro-haptens is limited (Fabian et al., 2013), however, several pre-haptens led to positive results in the LuSens assay (i.e. eugenol, isoeugenol, etc.) (Ramirez et al., 2014). Care needs to be taken when handling highly volatile chemicals as they can otherwise contaminate the controls or other substances via the vapor phase or the concentration actually applied can be reduced due to evaporation. Chemicals interacting with MTT may also pose problems, however, this would need to be confirmed (i.e. pigments). To date only some plant extracts and no dyes have been tested and the effect of these types of materials is not known. The method does not (yet) allow the determination of the potency of a sensitizer; hence, predictions are primarily limited to hazard identification, i.e. absence or presence of skin sensitisation potential.

As described by Urbisch and coworkers (Urbisch et al., 2015), the ARE-activation (and thus sensitization) potential of acylating agents is poorly recognized by LuSens, similarly to KeratinoSensTM (Further information regarding KeratinoSensTM can be found in the DB-ALM website). This effect is most likely related to the fact that the activation of Keap 1 sensor protein is related to cystein reactivity and acylating agents transfer their acyl moiety predominantly to lysine residues (Emter et al., 2013; Aptula et al., 2005). It is expected that ARE-activating assays do not accurately predict the effect of such agents. However, if the LuSens assay is used in a battery of different tests; some of its limitations may be compensated and correct predictions of the sensitizing potential are still achievable.
Experimental Description

Endpoint and Endpoint Measurement:

Luciferase activity is an indicator of the activation of a crucial pathway Keap1/Nrf2/ARE that it has been demonstrated in this assay to be essential for the response to skin sensitzers (Natsch and Emter, 2008).

Up-regulation of the luciferase activity after 48 h treatment. This up-regulation is triggered by the activation of ARE promoter sequence genetically introduced into keratinocytes. The activation of ARE indicates the activation of the Keap1/Nrf2/ARE signaling pathway.

Viability measured by MTT.

Experimental System(s):

Transgenic keratinocyte reporter cell line which expresses luciferase under the regulation of the rat Antioxidant Response Element (ARE). The ARE promoter belongs to the NADPH:quinone oxidoreductase 1 gene from rat

Basic Procedure

The LuSens assay, described below, consists of two phases: a cytotoxicity range finder experiment and the main experiment . The cytotoxicity range finder is used to select the adequate dose range that will be tested in the main experiment. In the main experiment is evaluated the expression of luciferase induced by the test item at non-cytotoxic concentrations.

a. Cytotoxicity range finder experiment

Cells are suspended in 9 mL of assay media (DMEM with 10% FBS Superior, Biochrom) per T75 flask and subsequently quantified with a Casy cell counting system (Roche, Germany). For analysis of cell viability, cells are seeded into clear flat bottom 96 well plates (TPP, Switzerland; 1x10^4 in 120 µL per well).

Test substances are dissolved in DMSO in a series of 1:2 dilutions starting at 200 mM (100x stock solution). Substances are further diluted (1:25) in medium to obtain 4x stock solution. Final DMSO concentrations in the assay did not exceed 1%. Treatment is performed by applying 50 µL of the test substance to each well (final volume: 200 µL) for 48 h. Each substance is tested at twelve concentrations in triplicate.

Assessment of cell viability is performed using the MTT assay as mentioned above. From the range finding experiments, the concentration in which cell viability corresponds to no less than 75% (CV75) is calculated. The highest tested concentration in the main experiment is then 1.2x CV75 (or 2000 µM if no cytotoxicity is observed).

b. Main experiment for luciferase expression and cell viability

For analysis of luciferase expression, cells are seeded into white flat bottom 96 well plates (Perkin Elmer; 1x10^4 in 120 µL per well). Test substances are dissolved in DMSO (100x stock solution) at concentrations according to the preliminary cytotoxicity data. Substances are further diluted (1:25) in medium to obtain 4x stock solution. Final DMSO concentration on the cells does not exceed 1%. The highest tested concentration is 1.2x CV75.

Treatment is performed by applying 50 µL of the test substance dilution to each well (final volume: 200 µL) for 48 h. Each substance is tested at six concentrations in triplicate. If the classification in both tests differed, a third test was conducted. After treatment, cell culture media is removed and cells are washed twice with 300 µL PBS (with Ca^{2+}/Mg^{2+}). After washing, 200 µL of Steady-Glo® working solution (one part of PBS(Ca^{2+}/Mg^{2+} free) and one part of Steady-Glo®Mix reagent (Promega, Germany)) are added to each well. Plates are gently shaken in the dark for at least 5 min and luminescence then measured using a luminometer (i.e. Perkin Elmer “Victor 3” 1420 Multilabel counter).
For analysis of cell viability, cells were seeded in clear flat bottom 96 well plates (TPP, Switzerland; 1x10^4 in 120 µL per well). Test substances were dissolved in DMSO (100x stock solution). Substances were further diluted (1:25) in medium to obtain 4x stock solution. Final DMSO concentration on the cells did not exceed 1%. Treatment was performed by applying 50 µL of the test substance dilution to each well (final volume: 200 µL) for 48 h. Each substance was tested in six concentrations (each concentration in triplicate). In addition, the assay was performed in at least 2 independent experiments.

Concentrations were chosen according to preliminary MTT cytotoxicity assays. Assessment of viable cells was also performed by MTT cytotoxicity assay. In parallel to the test substances, a positive control (EGDMA, 120µM or a different concentration inducing luciferase expression above 2.5 fold) was also tested in all cases and in most cases a negative control was also included (DL- Lactic acid (LA), 5000 µM).

Discussion

The LuSens assay has been tested systematically, by using the procedure described hereinafter, with a set of 74 test substances with and without sensitizer potential in humans and in the local lymph node assay (LLNA) (the list of test compounds can be found in Annex 1). It is a robust assay for identification of skin sensitizers, presenting a reproducibility over 90% and a predictivity of 83% when compared to human data (Ramirez et al., 2014). When comparing to the KeratinoSens™ assay, for a set of 69 test substances that have been tested in both assays, it was calculated an overall interchangeability of 88% (Urbisch et al., 2015). Most importantly, the integration of LuSens in the “2 out or 3 approach” including the direct peptide reactivity assay (DPRA) and the human cell line activation test resulted in similar accuracies towards prediction of sensitization when compared to LLNA or human data (Bauch et al.; 2012, Ramirez et al., 2014 and Urbisch et al., 2015).

Status

In Development:

At BASF SE the development of this assay has been completed.

Known Laboratory Use:

As part of a testing strategy for identification of skin sensitizers.

Participation in Validation Studies:

BASF has organized and completed an inter-laboratory validation study in which the method was transferred to 4 laboratories (see below) and the predictive capacity was also evaluated in each laboratory (Ramirez et al., 2016).

a. Burleson Research Technologies Inc, 120 First Flight Lane, Morrisville, NC, USA.
b. DSM Nutritional Products Ltd, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland.
c. Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, MD 20878, USA.
d. The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, OH 45040, USA.

An independent peer review by the EURL ECVAM Scientific Advisory Committee (ESAC) regarding the BASF-coordinated Performance Standards-based validation of the LuSens method for skin sensitisation testing has been published in July 2016 (ESAC, 2016).

Regulatory Acceptance:

The test method was adopted as **OECD Test Guideline 442D** in June 2018. An updated version of the TG has been issued (OECD, 2018).

Proprietary and/or Confidentiality Issues

Not applicable
Health and Safety Issues

General Precautions
The use of LuSens cells does not represent any kind of risk for human health or the environment; they are to be used in a BS1 laboratory.

MSDS Information
Please refer to MSDS of substances used in the assay.

Abbreviations and Definitions

AOP: Adverse Outcome Pathway
ARE: antioxidant response element
CV75: concentration leading to viability of 75% compared to solvent control
Cys: cysteine
DMSO: Dimethylsulfoxide
DPRA: direct peptide reactivity assay
EGDMA: ethylene glycol dimethacrylate
FCS: Fetal calf serum
FN: false negative
FP: false positive
GSH: Glutathione
h-CLAT: human cell-line activation test
Keap1: Kelch like ECH-associated protein 1
LA: DL-Lactic acid
LLNA: Local lymph node assay
MTT: Methyltetrazolium bromide
MUSST: Myeloid U-937 skin sensitization test
µL: microliter
µM: micromolar
Nrf2: Nuclear factor erythroid 2-related factor 2
PBS: phosphate buffered saline
RN: right negative
RP: right positive

Last update: 23 July, 2018

LuSens Assay
DB-ALM Protocol n° 184

Contact Details

Dr. Tzutzuy Ramirez
BASF SE
67056 Ludwigshafen
Germany
e-mail: tzutzuy.ramirez-hernandez@basf.com
telephone: +49 621 60-58234
fax: +49 621 60-58134

Dr. Annette Mehling
BASF Personal Care and Nutrition GmbH
40589 Duesseldorf- Holthausen E-EMC/DC - Z22
Germany
e-mail: annette.mehling@basf.com
telephone: +49 211 7940-9209

Dr. Robert Landsiedel
BASF SE
67056 Ludwigshafen RB/TB - Z470
Germany
e-mail: robert.landsiedel@basf.com
telephone: +49 621 60-56203
fax: +49 621 60-58134

Materials and Preparations

Cell or Test System

Keratinocyte cell line genetically modified to express luciferase under the expression of ARE of the NADPH:quinone oxidoreductase 1 gene. The cells can be obtained without licensing fees by sending an electronic request to BASF SE (alternatives@basf.com).

The LuSens cell line has been tested for mycoplasma contamination. BASF always performs a set of validity runs per every cell batch that is brought into culture. The validity runs consist in running a LuSens assay without test substance, but with all controls (positive, negative, blank, vehicle). Then the results are compared to previous data (i.e. historical data).

Equipment

Fixed Equipment

Sterile cell culture bank (Herasafe KS 18, Kendro), incubator for cell culture (Heraes, 37°C), water bath (Julabo, 37°C), centrifuge for plates, 50 mL and 10 mL tubes (TPP), luminometer (i.e. GloMax, Promega) and CASY cell counter (Roche).
Consumables

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Company</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MEM</td>
<td>Biochrom</td>
<td>FG 0445</td>
</tr>
<tr>
<td>FBS Superior (or equivalent)</td>
<td>Biochrom</td>
<td>S 0613/5</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Biochrom</td>
<td>A 2213</td>
</tr>
<tr>
<td>Puromycin dihydrochloride</td>
<td>Sigma</td>
<td>P9620-10mL</td>
</tr>
<tr>
<td>SDS</td>
<td>Sigma</td>
<td>436143-100G</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO)</td>
<td>Fisher Chemical</td>
<td>D/4121/PB15</td>
</tr>
<tr>
<td>Acetic acid 100%</td>
<td>Merck</td>
<td>1.00063.1011</td>
</tr>
<tr>
<td>Thiazolyl Blue Tetrazolium Bromide (MTT)</td>
<td>Sigma</td>
<td>M5655-1G</td>
</tr>
<tr>
<td>PBS (without Ca2+/Mg2+)</td>
<td>Biochrom</td>
<td>L1825</td>
</tr>
<tr>
<td>PBS (with Ca2+/Mg2+)</td>
<td>Biochrom</td>
<td>L1815</td>
</tr>
<tr>
<td>Steady-Glo Luciferase Assay System</td>
<td>Promega</td>
<td>E2520</td>
</tr>
<tr>
<td>Alternative: ONE-Glo Luciferase Assay System</td>
<td>Promega</td>
<td>E6120</td>
</tr>
<tr>
<td>Trypsin/EDTA</td>
<td>Biochrom</td>
<td>L2143</td>
</tr>
<tr>
<td>Ethylenediamine-tetra-acetic acid trinitrium salt (EDTA)</td>
<td>Sigma</td>
<td>03710-250g</td>
</tr>
<tr>
<td>White 96 well culture plates, with white bottom</td>
<td>PerkinElmer</td>
<td>6005680</td>
</tr>
<tr>
<td>Transparent 96 well culture plates</td>
<td>TPP</td>
<td>92696</td>
</tr>
<tr>
<td>Sealing tape</td>
<td>Nunc / Thermo</td>
<td>236366</td>
</tr>
<tr>
<td>Culture flask (T75)</td>
<td>TPP</td>
<td>90076</td>
</tr>
<tr>
<td>Cryo tubes</td>
<td>VWR (Brand)</td>
<td>479-1203</td>
</tr>
</tbody>
</table>

Preparations

Media and Endpoint Assay Solutions

Medium No.1 (growth media)

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MEM</td>
<td>500 mL</td>
<td>Biochrom FG 0445</td>
</tr>
<tr>
<td>FBS Superior *</td>
<td>50 mL</td>
<td>Biochrom S 0613/5</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>5 mL</td>
<td>Biochrom A 2213</td>
</tr>
<tr>
<td>Puromycin dihydrochloride</td>
<td>25 µL</td>
<td>Sigma P9620-10 mL</td>
</tr>
</tbody>
</table>

Medium No.2

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MEM</td>
<td>500 mL</td>
<td>Biochrom FG 0445</td>
</tr>
<tr>
<td>FBS Superior *</td>
<td>50 mL</td>
<td>Biochrom S 0613/5</td>
</tr>
</tbody>
</table>

Medium No.3

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MEM</td>
<td>500 mL</td>
<td>Biochrom FG 0445</td>
</tr>
<tr>
<td>FBS Superior *</td>
<td>5 mL</td>
<td>Biochrom S 0613/5</td>
</tr>
</tbody>
</table>
All media can be used and stored for a maximum of 4 weeks at 4°C.
* Only EU-certified; if this serum is not available in your country, please try the serum that you regularly use for other mammalian cell culture systems

Lysis buffer

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS</td>
<td>10 g</td>
<td>Sigma 436143-100G</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO)</td>
<td>99.6 mL</td>
<td>Fisher Chemical D/4121/PB15</td>
</tr>
<tr>
<td>Acetic acid 100%</td>
<td>0.4 mL</td>
<td>Merck 1.00063.1011</td>
</tr>
</tbody>
</table>

→ Stable at room temperature for 6 months

MTT solution

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiazolyl Blue Tetrazolium Bromide (MTT)</td>
<td>5 mg/mL</td>
<td>Sigma M5655-1G</td>
</tr>
<tr>
<td>PBS without Mg2+/Ca2+</td>
<td></td>
<td>Biochrom L1825</td>
</tr>
</tbody>
</table>

→ Sterile filtered
→ Stable at 4°C for 3 months

Steady-Glo® Luciferase Assay System, Promega

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady-Glo Luciferase Assay System</td>
<td>100 mL</td>
<td>Promega E2520</td>
</tr>
</tbody>
</table>

→ Mixed, stable at -20°C for 2 weeks

Freezing medium

<table>
<thead>
<tr>
<th>Substance / Solution</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth media (Medium No.1)</td>
<td>18 mL</td>
</tr>
<tr>
<td>DMSO</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

→ The freezing media will be prepared always fresh.

All media can be used and stored for a maximum of 4 weeks at 4°C.
* Only EU-certified; if this serum is not available in your country, please try the serum that you regularly use for other mammalian cell culture systems

Test Compounds

The list of test compounds is available as Annex 1 in the Downloads section of this DB-ALM Protocol No. 184.

Positive Control(s)
Ethylene glycol dimethacrylate (EGDMA), 120 µM

Negative Control(s)
DL-Lactic acid, 5000 µM
Method

The method consists of two phases, the range finder experiment and the main experiment.

A training video on the LuSens assay can be found under following link:

The following **time schedule** is an example for maintenance of the culture during propagation phase, set up for the cytotoxicity range finder test and main test.

Please note that every time a new cell cryovial is thawed, the passage number will be set to zero, even though we are aware that they have been cultured until p3 and to p4 for master bank and working bank respectively.

p=cell passage number

In grey: optional test starting date

<table>
<thead>
<tr>
<th>Working day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 (Monday)</td>
<td>Thaw LuSens cryovial (p0)</td>
</tr>
<tr>
<td>Day 2 (Tuesday)</td>
<td>Replace Medium No.1</td>
</tr>
<tr>
<td>Day 4 (Thursday)</td>
<td>Split cells: p0 → p1</td>
</tr>
<tr>
<td>Day 8 (Monday)</td>
<td>Split cells: p1 → p2</td>
</tr>
<tr>
<td>Day 11 (Thursday)</td>
<td>1.- For stocks’ preparation, freeze cells from p2</td>
</tr>
<tr>
<td></td>
<td>2.- For propagation, split cells: p2 → p3</td>
</tr>
<tr>
<td>Day 15 (Monday)</td>
<td>Split cells : p3 → p4</td>
</tr>
<tr>
<td>Day 18 (Thursday) or Day 19 (Friday)</td>
<td>1.- For stocks’ preparation, freeze cells from p4</td>
</tr>
<tr>
<td></td>
<td>2.- For propagation, split cells: p4→ p5</td>
</tr>
<tr>
<td></td>
<td>3.- For cytotoxicity range finder experiment, start a pre-culture</td>
</tr>
<tr>
<td>Day 22 (Monday)</td>
<td>1.- Split cells: p5 → p6</td>
</tr>
<tr>
<td></td>
<td>2.- Start cytotoxicity range finder test</td>
</tr>
<tr>
<td>Day 23 (Tuesday)</td>
<td>Treat according to concentration-range test</td>
</tr>
<tr>
<td>Day 25 (Thursday)</td>
<td>Conduct cytotoxicity range finder test measurement</td>
</tr>
<tr>
<td>Day 26 (Friday)</td>
<td>1.- Split cells: p6 → p7</td>
</tr>
<tr>
<td></td>
<td>2.- Pre-culture for main test 1(Friday-Monday)</td>
</tr>
<tr>
<td></td>
<td>3.- Pre-culture for main test 2 (Friday-Tuesday)</td>
</tr>
<tr>
<td>Day 29 (Monday)</td>
<td>1.- Split cells: p7 → p8</td>
</tr>
<tr>
<td></td>
<td>2.- Start main test 1 (Preparation of plates for treatment, p7)</td>
</tr>
<tr>
<td>Day 30 (Tuesday)</td>
<td>1.- Treatment: main test 1</td>
</tr>
<tr>
<td></td>
<td>2.- Start main test 2 (Preparation of plates for treatment, p7)</td>
</tr>
<tr>
<td>Day 31 (Wednesday)</td>
<td>Treatment: main test 2</td>
</tr>
<tr>
<td>Day 32 (Thursday)</td>
<td>Measurements main test 1</td>
</tr>
<tr>
<td></td>
<td>- Luciferase assay</td>
</tr>
<tr>
<td></td>
<td>- Viability assay (MTT)</td>
</tr>
<tr>
<td>Day 33 (Friday)</td>
<td>1.- Split cells, p8 → p9</td>
</tr>
<tr>
<td></td>
<td>2.- Measurements main test 2</td>
</tr>
<tr>
<td></td>
<td>- Luciferase assay</td>
</tr>
<tr>
<td></td>
<td>- Viability assay (MTT)</td>
</tr>
<tr>
<td></td>
<td>3.- Pre-culture for main test 3</td>
</tr>
<tr>
<td></td>
<td>4.- Pre-culture for main test 4</td>
</tr>
<tr>
<td>Day 36 (Monday)</td>
<td>1.- Split cells, p9 → p10</td>
</tr>
<tr>
<td></td>
<td>2.- Start main test 3, p9</td>
</tr>
<tr>
<td></td>
<td>…..and so on up to passage no.15 for main test</td>
</tr>
</tbody>
</table>
Routine Culture Procedure

1. Cell propagation and preparation of stocks

1.1. Thawing cryopreserved LuSens cells

a. Cryovials are placed in a 37°C water bath.

b. As soon as the ice has melted, cells are gently resuspended in 10 mL Medium No.1 (without Puromycin).

c. Cells (~1.5 - 2 x 10^6 cells,) are seeded into T75 culture flasks containing 10 mL of Medium No.1(without Puromycin).

d. Medium change is performed in the following 24 h of cell thawing. For this purpose, cell culture media is replaced by 20 mL Medium No.1 (with Puromycin), no washing step is needed.

1.2. Maintenance of the culture during propagation phase and pre-culturing

a. Cells are maintained in T75 flasks with 20 mL Medium No.1 at 37°C in a humidified atmosphere containing 5% CO_2 to a confluence of 80-90%.

1.3. Propagation

a. Cells are washed twice with 10 mL PBS containing 0.05% EDTA.

b. PBS is aspirated and cells are trypsinized by adding 1 mL Trypsin/EDTA and incubating the cells at 37°C until cells detach (6-7 minutes)

c. After cells have detached, they are resuspended in 9 mL Medium No.1 per T75 flask.

 - For culture Monday-Friday or Friday-Tuesday: 0.4 x10^6 cells are seeded per T75 culture flask and incubated until the next cell passage.
 - For culture Monday-Thursday or Friday-Monday: 0.68 x10^6 cells are seeded per T75 culture flask and incubated until the next cell passage.

1.4. Cryopreservation

a. Cells are harvested as previously described (1.3.a) and centrifuged at 380x g for 5 min.

b. The cell pellet is resuspended in freezing media at a density of 3-5 x 10^6 cells per cryovial (1.8 mL).

c. The 1.8 mL aliquot is then transferred into corresponding cryovials.

d. Cryovials are frozen at -80°C using a freezing container for 24 h. Then vials are transferred to liquid nitrogen (store at liquid phase) for longer storage.

Important:
Viability should be confirmed by microscopic analysis any time the cells are brought into culture. The performance of every new cell batch should be evaluated by performing validity runs (1-2) and comparing the results to previous data (i.e. historical data, when available). A validity run consists of a LuSens assay performed without test substance, but with all controls (blank medium, vehicle control, EGDMA 120 µM and DL-Lactic acid 5000 µM using the plate layout of main test 3.2 as shown in Annex 3).
Test Material Exposure Procedures

2. Assay

2.1. Cytotoxicity range finder test

2.1.1. Pre-culture (Day 18 or Day 19)

a. Cells are used for pre-culture at p4 → p5 on Thursday or Friday.
 ○ For pre-culture on Thursday seed T75 flask with 0.4x10⁶ cells (assay start on Monday).
 ○ For pre-culture on Friday seed T75 flask with 0.68x10⁶ cells (assay start on Monday) or flask with 0.4x10⁶ cells (assay start on Tuesday).

2.1.2. Preparation of plates for treatment (Day 22)

a. At the time of splitting, cells should be 80-90% confluent.

b. Cells are washed twice with 10 mL PBS containing 0.05% EDTA and trypsinized as previously described (by adding 1 mL Trypsin/EDTA to the flask and by incubating the cells at 37°C for 6-7 min or until cells have detached).

c. Cells are then resuspended in 9 mL Medium No.2 per T75 flask.

d. Cells are quantified and the cell suspension is adjusted to 83 000 cells per 1 mL.

e. 120 µL of cell suspension (10 000 cells) are seeded as follows:

 ○ For the testing of one test substance, cells are seeded in a flat bottom 96 well plate (see plate layout 3.1 in Annex 3).

 Important: no cells should be seeded into well “H12”

 ○ Before and during the seeding procedure, cells should be gently but thoroughly mixed to avoid sedimentation and to ensure equal distribution of cells per well.

f. Cells are incubated for 24 h at 37°C in a humidified atmosphere containing 5% CO₂.

 Important: for optimal cell culture conditions please bear in mind that the cell culture plates inside the incubator should be placed away from the ventilator.

2.1.3. Preparation of test and control substances for treatment (Day 23)

a. Test substances are dissolved to prepare stock solution concentrations of up to 200 mM in DMSO. Positive and negative controls are dissolved to prepare a stock solution of 12 mM EGDMA (positive control) and 500 mM DL-Lactic acid (negative control) in DMSO. The DMSO concentration in the test is adjusted to 1%.

Test substances, positive and negative control substances have to be prepared always fresh as described below and in Annex 2 and Annex 3.
b. Preparation of test substances:

1. From the 200 mM stock solution, a 100x master plate is prepared in DMSO, as described in the Annex 2 (2.1 and 2.2).
2. The 100x DMSO master plate is then used to prepare a 4x master plate in Medium No.3 as described in the Annex 2 (2.1 and 2.3).
3. Finally the following test concentrations are used for the cytotoxicity range finder test: 0.976, 1.953, 3.906, 7.812, 15.625, 31.25, 62.5, 125, 250, 500, 1000 and 2000 µM (see plate layout 3.1 in Annex 3).

c. Preparation of positive and negative controls:

4. Positive control (4x EGDMA): From the 12 mM EGDMA stock solution it is prepared a 1:25 dilution with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL EGDMA stock solution).
5. Negative control (4x DL-Lactic acid): From the 500 mM DL-Lactic acid stock solution it is prepared a 1:25 dilution with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL DL-Lactic acid stock solution).
6. Vehicle control (4x DMSO): DMSO is 1:25 diluted with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL DMSO).

2.1.4. Treatment (Day 23)

a. Aspirate cell culture media from the wells.
b. Add 150 µL Medium No.3 to each well.
c. Add 50 µL (dilution 1:4) of the 4x master plate to A-C, 1-12 (see Annex 3 (3.1)).
d. Add 50 µL (dilution 1:4) of 4x DMSO to G, 1-12
e. Add 50 µL (dilution 1:4) of the Medium No.3 to H, 1-6
f. Add 50 µL (dilution 1:4) of 4x DL-Lactic Acid to H, 7-9
g. Add 50 µL (dilution 1:4) of 4x EGDMA to H, 10-11
h. Seal the plates with breathable tapes to avoid evaporation of volatile compounds and to avoid cross contamination between wells.
i. Incubate the plates for 48h at 37°C in a humidified atmosphere containing 5% CO₂.

Important: for optimal cell culture conditions please bear in mind that the cell culture plates inside the incubator should be placed away from the ventilator.

2.1.5. Viability assay, MTT (Day 25)

a. Prepare MTT working solution by mixing 9 parts of Medium No.3 with 1 part of MTT solution
b. Aspirate cell culture media from all wells.
c. Add 200 µL MTT working solution to each well.
d. Incubate for 2 h at 37°C in a humidified atmosphere containing 5% CO₂.
e. After incubation, remove the solution and add 100 µL of lysis buffer to each well, agitate the plate for 5 min and measure absorption at 570 nm and at 690 nm using a photometer (690 nm is used as reference wavelength to correct for the background of the plate, and this can be dependent on the photometer used).

f. Calculate the concentration at which the viability is reduced to no more than 75% (CV75) compared to the vehicle control in order to identify the concentrations to be tested for the main test (For CV75 calculation see the section "Data analysis" below, p.15).

2.2. LuSens Assay (main test)

2.2.1. Pre-culture (Day 26)

a. Cells from p6 (cells up to p15 can be used) are pre-cultured on Friday. 0.68 x 10^6 cells are seeded in a T75 culture flask. Optional: for main test starting at Tuesday seed a T75 flask with 0.4 x 10^6 cells

2.2.2. Preparation of plates for treatment (Day 29 or Day 30)

a. At the time of splitting, cells should be 80-90% confluent.
b. Cells are washed twice with 10 mL PBS containing 0.05% EDTA.
c. Cell are trypsinized by adding 1mL Trypsin/EDTA to the flask and incubating at 37°C ~6- 7 minutes until the cells detach as assessed by microscopic examination
d. Cells are then resuspended in 9 mL Medium No. 2 per T75 flask.
e. Cells are quantified and the cell suspension is adjusted to 83 000 cells per 1 mL.
f. 120 µL of cell suspension (10 000 cells) are seeded as follows:

- One clear flat bottom 96 well plate and one white flat bottom 96 plate are needed for each test substance. Cells are seeded into a 96-well plates (see plate layout in Annex 3.2)

Important: no cells should be seeded into well “H12”

- Before and during seeding, the cells are gently but thoroughly mixed to avoid sedimentation and to ensure equal distribution of cells per well.

g. Cells are incubated for 24 h at 37°C in a humidified atmosphere containing 5% CO₂

Important: for optimal cell culture conditions please bear in mind that the cell culture plates inside the incubator should be placed place the culture plates away from the ventilator in the incubator.
2.2.3. Preparation of test and control substances for treatment (Day 30 or Day 31)

a. Substances are dissolved to create stock solution concentrations of up to 1.2 x CV75 in DMSO. Positive and negative controls are dissolved to prepare a stock solution of 12 mM EGDMA (positive control) and 500 mM DL-Lactic acid (negative control) in DMSO. The DMSO concentration in the test is adjusted to 1%.

Test substances, positive and negative control substances have to be prepared always fresh as described below and in Annex 2 and Annex 3.

b. Preparation of test substances:

1. From the stock solution, a 100x master plate is prepared in DMSO, as described in the Annex 2 (2.1 and 2.4).
2. The 100x DMSO master plate is then used to prepare a 4x master plate in Medium No.3 as described in the Annex 2 (2.1 and 2.5).
3. Finally the following test concentrations are used for the main test: CV75/2.074, CV75/1.728, CV75/1.44, CV75/1.2, CV75 and CV75x1.2 µM (see plate layout in Annex 3 (3.2)).

c. Preparation of positive and negative controls:

4. Positive control (4x EGDMA): From the 12 mM EGDMA stock solution it is prepared a 1:25 dilution with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL EGDMA stock solution).
5. Negative control (4x DL-Lactic acid): From the 500 mM DL-Lactic acid stock solution it is prepared a 1:25 dilution with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL DL-Lactic acid stock solution).
6. Vehicle Control (4x DMSO): DMSO is 1:25 diluted with Medium No.3 (e.g. 8.4 mL Medium No.3 + 350 µL DMSO).

2.2.4. Treatment (Day 30 or Day 31)

a. Aspirate cell culture media from the wells.

b. Add 150 µL Medium No. 3 to each well.

c. Add 50 µL (dilution 1:4) of the 4x master plate to A-C, 1-6 (see Annex 3 (3.2)).

d. Add 50 µL (dilution 1:4) of the Medium No.3 to row E, 1-12

e. Add 50 µL (dilution 1:4) of 4x DMSO to row F+G, 1-12

f. Add 50 µL (dilution 1:4) of 4x DL-Lactic acid to row H, 1-6

g. Add 50 µL (dilution 1:4) of 4x EGDMA to row H, 7-11

h. Seal the plates with breathable tapes to avoid evaporation of volatile compounds and to avoid cross contamination between wells.

i. Incubate the plates for 48h at 37°C in a humidified atmosphere containing 5% CO₂.

Important: for optimal cell culture conditions please place the culture plates away from the ventilator in the incubator.
2.2.5. Viability assay, MTT (Day 32 or Day 33)

a. Prepare MTT working solution by mixing 9 parts of Medium No.3 with 1 part of MTT solution.
b. Aspirate cell culture media from all wells.
c. Add 200 µL MTT working solution to each well.
d. Incubate for 2 h at 37°C in a humidified atmosphere containing 5% CO\textsubscript{2}.
e. After incubation, remove the solution and add 100 µL of lysis buffer to each well and shake the plate for 5 min and measure the absorption at 570 nm and at 690 nm with a photometer to correct for the background of the plate.

2.2.6. Luciferase expression (Steady-Glo® Luciferase Assay System, Promega, alternatively One- Glo® Luciferase Assay System can be also used, here it is described the use of Steady-Glo®)

a. Steady-Glo® reagent should be thawed at temperatures below 25°C to ensure reagent performance (see manufacturer’s protocol). From experience, best thawing conditions are over night at 4°C.
b. Transfer the content of one bottle of Steady-Glo® buffer to one bottle of Steady-Glo® Substrate.
c. Mix by inversion until the substrate is thoroughly dissolved.
d. Supernatant is aspirated from the white plate and discarded.
e. Wash each well twice with 300 µL PBS (with Ca2+/Mg2+).
f. Prepare Steady-Glo® working solution by mixing 1 part of PBS (without Ca2+/Mg2+) with 1 part of Steady-Glo®-Mix.
g. Add 200 µL Steady-Glo® working solution to each well.
h. Shake the plate slowly for at least 5 min in the dark and measure luminescence for 2 seconds using a luminometer. Other conditions may be required depending on the luminometer used for the analysis by the individual laboratory.

Important:
In order to ensure optimal luminescence measurements, when performing the assay for the first time, it is recommended to perform one or two runs of the LuSens assay using increasing concentrations of EGDMA as test substance (see plate layout 3.2 in Annex 3).
By performing these repetitions, following aspects should be considered:
a) luciferase expression in a dose response fashion (in wells A-C:1-6), after treatment with increasing concentrations of EDGMA.
b) no dose response in wells D: 1-6, and A-D: 7 in comparison to luminescence values in wells A-D: 8-12
c) the average percentage SD of the variability in at least 21 vehicle control wells (F-G: 1-12) should be below 20% and they should not show any “gradient-like” pattern.
Acceptance Criteria

For acceptance of a repetition the average induction for the positive control (120 µM EGDMA) should be ≥ 2.5 and it should have a relative viability of at least 70%. The induction triggered by the negative control (5000 µM DL-Lactic acid) as well as the basal expression of the cells should be <1.5 fold as compared to the induction of the solvent control. The average percentage SD of the variability in at least 21 solvent control wells should be below 20%. At least 3 test concentrations must be within viability limits, i.e. have relative viability of at least 70%.

Moreover, in case a result is to be considered negative, at least one concentration must be cytotoxic, i.e. have a cell viability < 70%, or the maximum concentration of 2000 µM must have been tested. The mean basal expression of the blank (only cells) should be < 1.5 (compared to the blank-corrected solvent control).

If any of these criteria is not met, the repetition is considered not valid and needs to be repeated.

Conditions for re-testing

For those repetitions that do not meet the validity criteria, re-testing is possible if:

1) the reason for non-valid repetition is known and can be justified (i.e., the use of unqualified cell passages, or technical mistakes such as dilution or pipetting mistakes).

In this case, the repetition (including the reason for disregarding it) will be documented and reported as non-qualified. The number of non-qualified runs is not restricted, but is expected to be low.

If the reason for non-valid repetition is unknown, the repetition will be documented and reported as not-valid. For a given test substance a maximum of three invalid repetitions is acceptable. In the case of three invalid repetitions without coming to a conclusion (see the section Prediction model below, p.17) re-testing is stopped.

Data Analysis

CV75 calculation

The CV75-value (relative survival rate) is calculated by linear extrapolation. This value is the substance concentration at which cell viability is 75% compared to the control.

The CV75 should be calculated as follows:

a. Two concentrations are selected, one above 75% viability and one below 75% viability as reference points

b. These data are used to calculate the slope as follows:
c. Thereafter, the value of the Y intercept is calculated as follows:

\[Y \text{ intercept} = \text{value of rel viability < 75\%} - (\text{Slope} \times \text{value of rel viability < 75\%}) \]

\[\text{Value of Y intercept} = 87.81 \]

\[\text{Slope} = -0.74944 \]

\[\text{CV75} = \frac{75 - \text{Y intercept}}{\text{Slope}} \]

\[\text{CV75} = \frac{75 - 87.81}{-0.74944} \]

In this example, the calculated slope is -0.74944 and the Y intercept is 87.81, leading to a CV75 of 17.1 µM.

Luciferase fold induction

The fold induction is calculated as follow:

\[\text{Fold induction} = \frac{\text{Results from the measurement (luminescence 2 sec)} - \text{Blank (value from well H12)}}{\text{Mean, blank solvent - Blank, without cells}} \]

The mean is calculated from three independent values.

Adjustment of concentration range

In some cases, it is possible that no cytotoxicity is observed. In these cases the maximum concentration used for testing is 2000 µM.

Should the cytotoxicity in the main test be substantially lower than in the range finder test and no luciferase induction is observed, then the second repetition should be performed using the CV75 of the range finder x1.44 µM. If in the second repetition toxicity and luciferase induction are still not observed, a third repetition should be run with the maximum dose of 2000 µM. This repetition should then be confirmed (4th repetition).

Adjustment of positive control concentration

In case the above specified positive control concentration of 120 µM is too toxic or not able to induce luciferase ≥ 2.5 (see the section **Acceptance criteria** above, p.15), the performing laboratory should run a range finder experiment with EGDMA in order to set the concentration at which luciferase induction is ≥ 2.5 folds compared to VC and viability is above 70%. This concentration should be confirmed in at least two more runs and should be used for the following experiments. In order to avoid variations in the positive control due to the use of new batches/charge of EGDMA, every time a new batch/charge is used, its toxicity and capacity to induce luciferase should be tested.
Prediction Model

Each valid repetition (i.e. meeting all acceptance criteria, according to the procedure described above) is interpreted as follows:

A test compound is considered to have sensitizing potential when the luciferase induction is above or equal to 1.5 fold compared to the vehicle control in 2 (or more than) consecutive non-cytotoxic tested concentrations whereby at least three tested concentrations must be non-cytotoxic. A test compound is considered to not to have sensitizing potential if the above effects are not observed. In order to come to a conclusion on the skin sensitization hazard of a substance, one complete experiment needs to be conducted. A complete experiment consists of two valid independent repetitions according to acceptance criteria. If the first two repetitions come to the same result (i.e. either being negative or being positive) no further testing is required. In case that the first two repetitions give discordant results (i.e. one is negative and the other is positive), a third independent repetition needs to be conducted to complete the experiment.

The skin sensitizing potential of a test substance is determined by the result of the majority of the repetitions of an experiment. If two of two or two of three repetitions are negative/positive, the substance is considered as negative/positive.

LuSens predictive capacity.

The predictivity of the LuSens assay has been evaluated using Cooper statistics (Cooper et al., 1979) for determination of accuracy, specificity, sensitivity as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mathematical Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>[\frac{RP}{RP + FN} \times 100]</td>
</tr>
<tr>
<td>Specificity</td>
<td>[\frac{RN}{RN + FP} \times 100]</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>[\frac{RP}{RP + FP} \times 100]</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>[\frac{RN}{RN + FN} \times 100]</td>
</tr>
<tr>
<td>Accuracy</td>
<td>[\frac{RN + RP}{RN + RP + FN + FP} \times 100]</td>
</tr>
</tbody>
</table>

Note: RP: right positive, RN: right negative, FP: false positive and FN: false negative

For this purpose, the data obtained from the LuSens assay were compared to the literature data from human or local lymph node assay (LLNA). The predictivity is summarized in Table 1. The overview of the effect per test substance compared to human or LLNA are summarized in (Ramirez et al., 2014).

Table 1. Summary of predictivity of LuSens based on Cooper statistics (Ramirez et al., 2014)

<table>
<thead>
<tr>
<th></th>
<th>Compare to human data</th>
<th>Compare to LLNA data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Compounds analyzed</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>83%</td>
<td>74%</td>
</tr>
<tr>
<td>Specificity</td>
<td>81%</td>
<td>74%</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>88%</td>
<td>86%</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>76%</td>
<td>56%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>83%</td>
<td>74%</td>
</tr>
</tbody>
</table>
Method Performance

The LuSens assay based on luciferase reporter cell lines and ARE pathway activation can also be used to indirectly assess the intracellular cysteine reactivity of a substance and the resulting activation of the keap-1/Nrf2 signalling pathway.

The LuSens assay correctly predicted 57 of 69 or 53 of 72 substances when compared to human or LLNA data, respectively. When compared to human data, seven substances were incorrectly rated to be negative: aniline, ethylene diamine, Luperox A75 (benzoyl peroxide), nickel chloride, phenyl benzoate, phthalic anhydride and propyl gallate. Five substances were incorrectly rated as positive when compared to human data: 4 methoxyacetophenone, 6-methylcoumarin, methyl salicylate, propyl-4-hydroxybenzoate, and tween 80. When compared to LLNA data, twelve substances would be incorrectly rated to be negative: 4-allylanisole, aniline, ethylene diamine, farnesal, hexadecyltrimethylammonium bromide, phthalic anhydride, phenyl benzoate, propyl gallate, pyridin, sodium lauryl sulphate (SDS), resorcinol, tartaric acid and xylene. It should be noted that hexadecyltrimethylammonium bromide, pyridine, SDS, tartaric acid, resorcinol and xylene yield false positive results in the LLNA when compared to human data. Eight substances would be incorrectly rated to be positive when compared to LLNA data: 4- methoxyacetophenone, 6-methylcoumarin, benzyl alcohol, methyl salicylate, propyl 4- hydroxybenzoate, and tween 80.

For the assessment of the predictive capacity of the LuSens assay, the data obtained from the in vitro assay were compared to human or LLNA data from the literature using Cooper statistics (Table 1).

From this analysis the following predictivity values were calculated: sensitivity of 83% or 74%, specificity of 81% or 74% and an overall accuracy of 83% or 74% when compared to human or LLNA data, respectively.

Modifications of the method

The here in reported method is the one used for the Phase II of the inter-laboratory validation study (Ramirez et al., 2016) and the intra-laboratory validation study (Ramirez et al., 2014).

In comparison to the original protocol (Bauch et al., 2012), the major modifications of the method are listed as follows:

- **A clonal selection** was performed in order to obtain the fittest and purest clone to react against sensitzers.
- **Preliminary cytotoxicity assay (range finder experiment)** dosed from 2000µM to 12 concentrations at decreasing 2-fold dilution series (2000; 1000; 500; 250; 125; 62.50; 31.25; 15.62; 7.81; 3.90; 1.95;1.97 µM) to identify the CV75.
- **Test compounds** doses were adjusted, the top dose was always 1.2x CV 75 and from it 1.2-fold dilution are prepared as follows: CV 75x1.2; CV75, CV75/1.2x; CV75/1.44x; CV75/1.728; CV75/2.074
- **Positive control** selected was ethylene glycol dimethacrylate (EGDMA) at 120 µM or similar concentration meeting the positive control acceptance criteria.
- **Inclusion of control** for basal expression of luciferase. Inclusion of a negative control, DL-Lactic acid at 5000 µM.
- **Acceptance criteria of the positive control**: Luciferase fold induction ≥ 2.5x with a relative viability ≥70%.
- **Acceptance criteria** of the negative control: Luciferase fold induction < 1.5x
- **Non sensitizers** are to induce a luciferase fold induction < 1.5x, while **sensitizers** will induce a luciferase fold induction equal or above 1.5x.

After inclusion of those modifications, the predictivity of the new assay was evaluated with a set of 74 test substances (Ramírez et al., 2014), leading to similar predictive capacity to the one previously reported by Bauch and co-workers (Bauch et al., 2012).
Annexes

Supporting information to the LuSens Assay protocol are available as Annexes from the DB-ALM website. Go to the section related to the DB-ALM Protocol No. 184 and select Downloads to get access to the following Annexes.

- **Annex 1. LuSens Assay- Test compounds.**

 List of test items used to develop and optimize the test method.

- **Annex 2. LuSens Assay- Experimental setup.**

 Instructions for preparation of experimental plates with indication of test substances dilutions.

 2.1 Preparation of the 100x DMSO master plate and dilutions

 2.2 Preliminary cytotoxicity test: Preparation of Plate 100 x

 2.3 Preliminary Cytotoxicity test: Preparation of Plate 4x

 2.4 Main test: Preparation of Plate 100x

 2.5 Main test: Preparation of Plate 4x

- **Annex 3. LuSens Assay- Plate layouts.**

 Plate layouts for the tests of LuSens assay.

 3.1 Cytotoxicity range finder test, plate layout

 3.2 Main test plate layout

Bibliography

- Emter, R., van der Veen, J.W., Adamson, G., Ezendam, J., van Loveren, H., Natsch, A. (2013) Gene expression changes induced by skin sensitisers in the KeratinoSens® cell line: Discriminating Nrf2-dependent and Nrf2-independent events *Toxicology In Vitro 27(8), 2225–2232*

- Fabian, E., Vogel, D., Blatz, V., Ramirez, T., Kolle, S., Eltze, T., Van Ravenzwaay, B., Oesch, F., Landsiedel, R. (2013) Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro *Archives of Toxicology 87, 1683–1696*
The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers-Functional relevance and a hypothesis on innate reactions to skin sensitizers
Toxicological Sciences 113(2), 284-92

Skin sensitizers induce antioxidant response element dependent genes: Application to the in vitro testing of the sensitization potential of chemicals.
Toxicological Sciences 102, 110–119

OECD (2018)
KEY EVENT BASED TEST GUIDELINES 442D. In Vitro Sensitisation assays addressing the AOP KeyEvent on: Keratinocyte activation. Revised version of the OECD TG442D adopted on 27th June 2018
OECD Guidelines for the Testing of Chemicals, Section 4, Health Effects

OECD (2012)
OECD Series on Testing and Assessment No. 168: The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. Link to Part 1, Link to Part 2 (last access 20.08.2013)
OECD Environmental Health and Safety Publications

LuSens: A keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification.
Toxicology In Vitro 28, 1482–1497

Intra- and inter-laboratory reproducibility and accuracy of the LuSens assay: A reporter gene-cell line to detect keratinocyte activation by skin sensitizers.
Toxicology In Vitro 32, 278–286

Assessing skin sensitization hazard in mice and men using non-animal test methods.
Regulatory Toxicology and Pharmacology 71(2), 337-351

In vitro assessment of sensitizing activity of low molecular weight compounds
Toxicology and Applied Pharmacology 207, 142-148