Many other datasets are available to display. This notebook give examples of other collections:
1) C03 is the dataset of the Core_03 mosaic created from 2.5 meters resolution SPOT images acquired in 2013-2014. For this dataset two mosaics are available: p.parameter("mode","feathering") displays a mosaic obtained by feathering between adiacent images, while p.parameter("mode","seamline") displays a mosaic based on morphological image compositing [http://dx.doi.org/10.1109/TPAMI.2006.99], see also [http://publications.jrc.ec.europa.eu/repository/handle/JRC92135].
More information on Core_03 at Copernicus Digital Warehouse: https://spacedata.copernicus.eu/web/cscda/dataset/-/asset_publisher/uDd0At6AeU7H/content/dwh_mg2b_core_03?p_p_auth=pXaVsdSm&_101_INSTANCE_nI5RModiuGwm_redirect=%2Fweb%2Fcscda%2Fdata-offer%2Fcore-datasets
map = Map()
map
coll = inter.ImageCollection("C03")
p = coll.process()
p.parameter("mode","feathering")
#p.parameter("mode","seamline")
map.clear()
tlayer = map.addLayer(p.toLayer())
2) GHSL is a sample result dataset calculated by the Global Human Settlement project, see http://ghsl.jrc.ec.europa.eu/.
The GHSL collection considered in this notebook is based on global processing of Sentinel-1 images performed on the JEODPP [https://connected.cnect.cec.eu.int/community/jrc/directorate-e/e1/blog/2017/01/16/first-experiment-on-global-processing-of-sentinel-1-copernicus-earth-observation-data-for-monitoring-human-presence-on-earth], [http://worldcover2017.esa.int/files/2.2-p1.pdf], and [http://dx.doi.org/10.2760/385820].
map = Map()
map
coll = inter.ImageCollection("GHSL")
p = coll.process()
colors = ["Red"]
p.colorCustom(colors)
map.clear()
tlayer = map.addLayer(p.toLayer())
3) DEM is a digital elevation model created from EU-DEM data [http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/elevation/eu-dem-laea]. The following parameters can be set to define how the display is generated on-the-fly:
(See also notebook Demo_7_DEMGui for a graphical user interface to set the parameter values.)
A python tuple containing a list of colors is then used to create a custom palette. The range of elevation values that correspond to the color range can be set using the p.scale() method. In this example all values below zero elevation are represented with the first color of the palette, while all values over elevation 1500 meters are displayed in white). Note that colors of the custom palette can be written in RGB mode (like "#27A827") of with color names (calling inter.ImageCollection("DEM").printNamedColors() gives the list of all available named colors).
map = Map()
map
p = inter.ImageCollection("DEM").process()
p.parameter("mode","hillshade")
p.parameter("azimuth","45.0")
p.parameter("elevation","45.0")
p.parameter("lighting","1.2")
p.parameter("wslope","1.0")
p.parameter("wshade","1.0")
p.parameter("wcolor","1.0")
p.parameter("zfactor","1.0")
p.scale(0,1500)
colors = ["#FFFFAA", "#27A827", "#0B8040", "Yellow", "#FFBA03", "#9E1E02", "#6E280A", "#8A5E42", "White"]
p.colorCustom(colors)
map.clear()
tlayer1 = map.addLayer(p.toLayer())